These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15285366)

  • 1. Use of vegetative furrows to mitigate copper loads and soil loss in runoff from polyethylene (plastic) mulch vegetable production systems.
    Rice PJ; Harman-Fetcho JA; Teasdale JR; Sadeghi AM; McConnell LL; Coffman CB; Herbert RR; Heighton LP; Hapeman CJ
    Environ Toxicol Chem; 2004 Mar; 23(3):719-25. PubMed ID: 15285366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of copper levels in runoff from fresh-market vegetable production using polyethylene mulch or a vegetative mulch.
    Rice PJ; McConnell LL; Heighton LP; Sadeghi AM; Isensee AR; Teasdale JR; Abdul-Baki AA; Harman-Fetcho JA; Hapeman CJ
    Environ Toxicol Chem; 2002 Jan; 21(1):24-30. PubMed ID: 11804057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing insecticide and fungicide loads in runoff from plastic mulch with vegetative-covered furrows.
    Rice PJ; Harman-Fetcho JA; Sadeghi AM; McConnell LL; Coffman CB; Teasdale JR; Abdul-Baki A; Starr JL; McCarty GW; Herbert RR; Hapeman CJ
    J Agric Food Chem; 2007 Feb; 55(4):1377-84. PubMed ID: 17243696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems.
    Rice PJ; McConnell LL; Heighton LP; Sadeghi AM; Isensee AR; Teasdale JR; Abdul-Baki AA; Harman-Fetcho JA; Hapeman CJ
    J Environ Qual; 2001; 30(5):1808-21. PubMed ID: 11577890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of vegetable production management practices to reduce the ecological risk of pesticides.
    Rice PJ; Hapeman CJ; McConnell LL; Sadeghi AM; Teasdale JR; Coffman CB; McCarty GW; Abdul-Baki AA; Starr JL
    Environ Toxicol Chem; 2007 Nov; 26(11):2455-64. PubMed ID: 17941735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper losses in surface runoff from flatwoods citrus production areas.
    Wilson PC; Boman B; Albano JP
    Bull Environ Contam Toxicol; 2012 Oct; 89(4):751-4. PubMed ID: 22933171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and environmental impact of pesticides in plastic mulch production runoff: field and laboratory studies.
    Dietrich AM; Gallagher DL
    J Agric Food Chem; 2002 Jul; 50(15):4409-16. PubMed ID: 12105978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice.
    Gallagher DL; Johnston KM; Dietrich AM
    Water Res; 2001 Aug; 35(12):2984-94. PubMed ID: 11471699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Napropamide residues in runoff and infiltration water from pepper production.
    Antonious GF; Patterson MA
    J Environ Sci Health B; 2005; 40(3):385-96. PubMed ID: 15913012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of agricultural sediment load reductions using vegetative filter strips of cool season grasses.
    Fasching RA; Bauder JW
    Water Environ Res; 2001; 73(5):590-6. PubMed ID: 11765995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sugarcane cropping systems on herbicide losses in surface runoff.
    Nachimuthu G; Halpin NV; Bell MJ
    Sci Total Environ; 2016 Jul; 557-558():773-84. PubMed ID: 27046141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.
    Prosdocimi M; Jordán A; Tarolli P; Keesstra S; Novara A; Cerdà A
    Sci Total Environ; 2016 Mar; 547():323-330. PubMed ID: 26789370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility of dimethoate residues from spring broccoli field.
    Antonious GF; Ray ZM; Rivers L
    J Environ Sci Health B; 2007 Jan; 42(1):9-14. PubMed ID: 17162562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vetiver grass hedgerows significantly reduce nitrogen and phosphorus losses from fertilized sloping lands.
    Oshunsanya SO; Li Y; Yu H
    Sci Total Environ; 2019 Apr; 661():86-94. PubMed ID: 30665135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.
    Antonious GF
    J Environ Sci Health B; 2012; 47(7):608-21. PubMed ID: 22560023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.
    Spargo JT; Evanylo GK; Alley MM
    J Environ Qual; 2006; 35(6):2342-51. PubMed ID: 17071905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intercropping period management on runoff and erosion in a maize cropping system.
    Laloy E; Bielders CL
    J Environ Qual; 2010; 39(3):1001-8. PubMed ID: 20400595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation and origin of particulate copper in runoff water from a Mediterranean vineyard catchment.
    Ribolzi O; Valles V; Gomez L; Voltz M
    Environ Pollut; 2002; 117(2):261-71. PubMed ID: 11916040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model studies of corrosion-induced copper runoff fate in soil.
    Bertling S; Degryse F; Wallinder IO; Smolders E; Leygraft C
    Environ Toxicol Chem; 2006 Mar; 25(3):683-91. PubMed ID: 16566152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
    Steinmetz Z; Wollmann C; Schaefer M; Buchmann C; David J; Tröger J; Muñoz K; Frör O; Schaumann GE
    Sci Total Environ; 2016 Apr; 550():690-705. PubMed ID: 26849333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.