These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 15285621)
1. [The effect of Clp proteins on DnaK-dependent refolding of bacterial luciferases]. Zavil'gel'skiĭ GB; Kotova VIu; Mazhul' MM; Manukhov IV Mol Biol (Mosk); 2004; 38(3):507-14. PubMed ID: 15285621 [TBL] [Abstract][Full Text] [Related]
2. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711 [TBL] [Abstract][Full Text] [Related]
3. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA; Kwiatkowska JM; Lipińska B Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982 [TBL] [Abstract][Full Text] [Related]
4. Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins. Manukhov IV; Eroshnikov GE; Vyssokikh MY; Zavilgelsky GB FEBS Lett; 1999 Apr; 448(2-3):265-8. PubMed ID: 10218489 [TBL] [Abstract][Full Text] [Related]
5. [Effects of the IbpAB AND ClpA chaperones on DnaKJE-dependent refolding of bacterial luciferases in Escherichia coli cells]. Mel'kina OE; Kotova VIu; Manukhov IV; Zavil'gel'skiĭ GB Mol Biol (Mosk); 2011; 45(3):524-8. PubMed ID: 21790015 [TBL] [Abstract][Full Text] [Related]
6. [Thermostability and Refolding of Proteins in Bacteria Is Determined by the Activity of Two Different ATP-Dependent Chaperone Groups]. Zavilgelsky GB; Gnuchikh EY; Melkina OE Mol Biol (Mosk); 2020; 54(2):300-307. PubMed ID: 32392200 [TBL] [Abstract][Full Text] [Related]
7. [Trigger factor dependent refolding of bacterial luciferases in Escherichia coli cells: kinetics, efficiency and effect of the bichaperone system, DnaKJE-ClpB]. Mel'kina OE; Gorianin II; Manukhov IV; Zavil'gel'skiĭ GB Mol Biol (Mosk); 2013; 47(3):492-7. PubMed ID: 23888781 [TBL] [Abstract][Full Text] [Related]
8. Balance of ATPase stimulation and nucleotide exchange is not required for efficient refolding activity of the DnaK chaperone. Groemping Y; Seidel R; Reinstein J FEBS Lett; 2005 Oct; 579(25):5713-7. PubMed ID: 16225874 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ. Gnuchikh E; Baranova A; Schukina V; Khaliullin I; Zavilgelsky G; Manukhov I PLoS One; 2019; 14(12):e0226576. PubMed ID: 31869349 [TBL] [Abstract][Full Text] [Related]
10. [Mutation clpA::kan in gene encoding the chaperone of Hsp100-family decreases DnaK-dependent refolding efficiency of proteins in Escherichia coli cells]. Kotova VIu; Manukhov iV; Mel'kina OE; Zavil'gel'skiĭ GB Mol Biol (Mosk); 2008; 42(6):1018-22. PubMed ID: 19140322 [TBL] [Abstract][Full Text] [Related]
11. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374 [TBL] [Abstract][Full Text] [Related]
12. Degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free. Slominska M; Wahl A; Wegrzyn G; Skarstad K Biochem J; 2003 Mar; 370(Pt 3):867-71. PubMed ID: 12479794 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. Missiakas D; Schwager F; Betton JM; Georgopoulos C; Raina S EMBO J; 1996 Dec; 15(24):6899-909. PubMed ID: 9003766 [TBL] [Abstract][Full Text] [Related]
14. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Wickner S; Gottesman S; Skowyra D; Hoskins J; McKenney K; Maurizi MR Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12218-22. PubMed ID: 7991609 [TBL] [Abstract][Full Text] [Related]
15. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Weber-Ban EU; Reid BG; Miranker AD; Horwich AL Nature; 1999 Sep; 401(6748):90-3. PubMed ID: 10485712 [TBL] [Abstract][Full Text] [Related]
16. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Hosseinkhani S; Szittner R; Meighen EA Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872 [TBL] [Abstract][Full Text] [Related]
17. Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. Levy EJ; McCarty J; Bukau B; Chirico WJ FEBS Lett; 1995 Jul; 368(3):435-40. PubMed ID: 7635193 [TBL] [Abstract][Full Text] [Related]
18. Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family. Svetlov MS; Kommer A; Kolb VA; Spirin AS Protein Sci; 2006 Feb; 15(2):242-7. PubMed ID: 16385000 [TBL] [Abstract][Full Text] [Related]
19. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase. Wei CJ; Lei B; Tu SC Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]