BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15285805)

  • 1. Modelling neuroinflammatory phenotypes in vivo.
    Buckwalter MS; Wyss-Coray T
    J Neuroinflammation; 2004 Jul; 1(1):10. PubMed ID: 15285805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment.
    Webster SJ; Van Eldik LJ; Watterson DM; Bachstetter AD
    J Neurosci; 2015 Apr; 35(16):6554-69. PubMed ID: 25904805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pro-inflammatory cytokines in Alzheimer's disease].
    Stamouli EC; Politis AM
    Psychiatriki; 2016; 27(4):264-275. PubMed ID: 28114090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of transforming growth factor β1 /Smad pathway in Alzheimer's disease inflammation pathology.
    Yang C; Xu P
    Mol Biol Rep; 2023 Jan; 50(1):777-788. PubMed ID: 36319781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation of liver cells in health and disease.
    Kmieć Z
    Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex role of chemokine mediators in animal models of Alzheimer's Disease.
    Martin E; Delarasse C
    Biomed J; 2018 Feb; 41(1):34-40. PubMed ID: 29673550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decrease of TGF-beta1 plasma levels and increase of nitric oxide synthase activity in leukocytes as potential biomarkers of Alzheimer's disease.
    De Servi B; La Porta CA; Bontempelli M; Comolli R
    Exp Gerontol; 2002 Jun; 37(6):813-21. PubMed ID: 12175481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease.
    Mocali A; Cedrola S; Della Malva N; Bontempelli M; Mitidieri VA; Bavazzano A; Comolli R; Paoletti F; La Porta CA
    Exp Gerontol; 2004 Oct; 39(10):1555-61. PubMed ID: 15501026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease.
    Jin JJ; Kim HD; Maxwell JA; Li L; Fukuchi K
    J Neuroinflammation; 2008 May; 5():23. PubMed ID: 18510752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats.
    Chen JH; Ke KF; Lu JH; Qiu YH; Peng YP
    PLoS One; 2015; 10(2):e0116549. PubMed ID: 25658940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Chemokines in Alzheimer's Disease.
    Jorda A; Campos-Campos J; Iradi A; Aldasoro M; Aldasoro C; Vila JM; Valles SL
    Endocr Metab Immune Disord Drug Targets; 2020; 20(9):1383-1390. PubMed ID: 32003705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease.
    Wyss-Coray T; Masliah E; Mallory M; McConlogue L; Johnson-Wood K; Lin C; Mucke L
    Nature; 1997 Oct; 389(6651):603-6. PubMed ID: 9335500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Inflammatory Mediators and Microglial Activation Through Physical Exercise in Alzheimer's and Parkinson's Diseases.
    de Almeida EJR; Ibrahim HJ; Chitolina Schetinger MR; de Andrade CM; Cardoso AM
    Neurochem Res; 2022 Nov; 47(11):3221-3240. PubMed ID: 35962936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications.
    Uddin MS; Lim LW
    Ageing Res Rev; 2022 Jun; 78():101622. PubMed ID: 35427810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain.
    Teo EJ; Chand KK; Miller SM; Wixey JA; Colditz PB; Bjorkman ST
    Sci Rep; 2023 Jan; 13(1):282. PubMed ID: 36609414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer's mice overproducing transforming growth factor-beta 1.
    Buckwalter MS; Coleman BS; Buttini M; Barbour R; Schenk D; Games D; Seubert P; Wyss-Coray T
    J Neurosci; 2006 Nov; 26(44):11437-41. PubMed ID: 17079673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles.
    Ghosh P; Singh R; Ganeshpurkar A; Pokle AV; Singh RB; Singh SK; Kumar A
    Neurochem Int; 2021 Dec; 151():105212. PubMed ID: 34656693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease.
    Kaur D; Sharma V; Deshmukh R
    Inflammopharmacology; 2019 Aug; 27(4):663-677. PubMed ID: 30874945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease.
    Culbert AA; Skaper SD; Howlett DR; Evans NA; Facci L; Soden PE; Seymour ZM; Guillot F; Gaestel M; Richardson JC
    J Biol Chem; 2006 Aug; 281(33):23658-67. PubMed ID: 16774924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukins, inflammation, and mechanisms of Alzheimer's disease.
    Weisman D; Hakimian E; Ho GJ
    Vitam Horm; 2006; 74():505-30. PubMed ID: 17027528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.