These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15285877)

  • 1. A theoretical radiobiological assessment of the influence of radionuclide half-life on tumor response in targeted radiotherapy when a constant kidney toxicity is maintained.
    Abou-Jaoudé W; Dale R
    Cancer Biother Radiopharm; 2004 Jun; 19(3):308-21. PubMed ID: 15285877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation and the advantage of longer-lived radionuclides in radioimmunotherapy.
    Howell RW; Goddu SM; Rao DV
    Med Phys; 1998 Jan; 25(1):37-42. PubMed ID: 9472824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy.
    Dale R
    Cancer Biother Radiopharm; 2004 Jun; 19(3):363-70. PubMed ID: 15285884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining the LKB NTCP model with radiosensitivity parameters to characterize toxicity of radionuclides based on a multiclonogen kidney model: a theoretical assessment.
    Lin H; Jing J; Xu L; Wu D; Xu Y
    Australas Phys Eng Sci Med; 2012 Jun; 35(2):165-76. PubMed ID: 22678954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tumour shrinkage on the biological effectiveness of permanent brachytherapy implants.
    Dale RG; Jones B; Coles IP
    Br J Radiol; 1994 Jul; 67(799):639-45. PubMed ID: 8061998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the linear-quadratic model to radioimmunotherapy: further support for the advantage of longer-lived radionuclides.
    Howell RW; Goddu SM; Rao DV
    J Nucl Med; 1994 Nov; 35(11):1861-9. PubMed ID: 7965170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model.
    Dale RG
    Br J Radiol; 1989 Mar; 62(735):241-4. PubMed ID: 2702381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of radiobiological concepts in radionuclide therapy of cancer.
    Kumar C; Shetake N; Desai S; Kumar A; Samuel G; Pandey BN
    Int J Radiat Biol; 2016; 92(4):173-86. PubMed ID: 26917443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation: consequences for dosimetry].
    Oehme L; Dörr W; Wust P; Kotzerke J
    Nuklearmedizin; 2008; 47(5):205-9. PubMed ID: 18852927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants.
    Armpilia CI; Dale RG; Coles IP; Jones B; Antipas V
    Int J Radiat Oncol Biol Phys; 2003 Feb; 55(2):378-85. PubMed ID: 12527051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab' fragments in a human colonic cancer model.
    Behr TM; Béhé M; Stabin MG; Wehrmann E; Apostolidis C; Molinet R; Strutz F; Fayyazi A; Wieland E; Gratz S; Koch L; Goldenberg DM; Becker W
    Cancer Res; 1999 Jun; 59(11):2635-43. PubMed ID: 10363986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dose-fractionation in radioimmunotherapy: implications for selecting radionuclides.
    Rao DV; Howell RW
    J Nucl Med; 1993 Oct; 34(10):1801-10. PubMed ID: 8410301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical Note: Impact of cell repopulation and radionuclide uptake phase on cell survival.
    Šefl M; Kyriakou I; Emfietzoglou D
    Med Phys; 2016 Jun; 43(6):2715-2720. PubMed ID: 27277018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The radiobiology of targeted radiotherapy.
    Wheldon TE; O'Donoghue JA
    Int J Radiat Biol; 1990 Jul; 58(1):1-21. PubMed ID: 1973428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonuniform absorbed dose distribution in the kidney: the influence of organ architecture.
    Green A; Flynn A; Pedley RB; Dearling J; Begent R
    Cancer Biother Radiopharm; 2004 Jun; 19(3):371-7. PubMed ID: 15285885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiotargeting agents for cancer therapy.
    Kassis AI
    Expert Opin Drug Deliv; 2005 Nov; 2(6):981-91. PubMed ID: 16296803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response--implications for radionuclide therapy.
    Wessels BW; Konijnenberg MW; Dale RG; Breitz HB; Cremonesi M; Meredith RF; Green AJ; Bouchet LG; Brill AB; Bolch WE; Sgouros G; Thomas SR
    J Nucl Med; 2008 Nov; 49(11):1884-99. PubMed ID: 18927342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One single-time-point kidney uptake from OctreoScan correlates with number of desintegrations measured over 72 hours and calculated for the 6.7 hours half-life nuclide (177)Lu.
    Miederer M; Reber H; Helisch A; Fottner C; Weber M; Schreckenberger M
    Clin Nucl Med; 2012 Oct; 37(10):e245-8. PubMed ID: 22899194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of external beam dose-response relationships to kidney toxicity associated with radionuclide therapy.
    O'Donoghue J
    Cancer Biother Radiopharm; 2004 Jun; 19(3):378-87. PubMed ID: 15285886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy.
    Millar WT
    Br J Radiol; 1991 Mar; 64(759):242-51. PubMed ID: 2021798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.