BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 15286174)

  • 21. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.
    Aravind L; Anantharaman V; Koonin EV
    Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery.
    Brown MV; Reader JS; Tzima E
    Vascul Pharmacol; 2010; 52(1-2):21-6. PubMed ID: 19962454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methionyl-tRNA synthetase.
    Deniziak MA; Barciszewski J
    Acta Biochim Pol; 2001; 48(2):337-50. PubMed ID: 11732605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular network and functional implications of macromolecular tRNA synthetase complex.
    Han JM; Kim JY; Kim S
    Biochem Biophys Res Commun; 2003 Apr; 303(4):985-93. PubMed ID: 12684031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of the arginyl-tRNA synthetase protein during purification by affinity chromatography on immobilized total tRNA and immobilized tRNA, specific for arginyl-tRNA synthetase.
    Berg BH
    Biochem Mol Biol Int; 1993 Oct; 31(2):219-28. PubMed ID: 8275012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
    Fu Y; Kim Y; Jin KS; Kim HS; Kim JH; Wang D; Park M; Jo CH; Kwon NH; Kim D; Kim MH; Jeon YH; Hwang KY; Kim S; Cho Y
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15084-9. PubMed ID: 25288775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of an aminoacyl-tRNA synthetase with a putative metabolic protein in archaea.
    Lipman RS; Chen J; Evilia C; Vitseva O; Hou YM
    Biochemistry; 2003 Jun; 42(24):7487-96. PubMed ID: 12809505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the multi-tRNA synthetase complex and its role in cancer.
    Hyeon DY; Kim JH; Ahn TJ; Cho Y; Hwang D; Kim S
    J Biol Chem; 2019 Apr; 294(14):5340-5351. PubMed ID: 30782841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compartmentalization of certain components of the protein synthesis apparatus in mammalian cells.
    Popenko VI; Ivanova JL; Cherny NE; Filonenko VV; Beresten SF; Wolfson AD; Kisselev LL
    Eur J Cell Biol; 1994 Oct; 65(1):60-9. PubMed ID: 7889996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases.
    Luque I; Riera-Alberola ML; Andújar A; Ochoa de Alda JA
    Mol Biol Evol; 2008 Nov; 25(11):2369-89. PubMed ID: 18775898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of the Arc1p tRNA-binding domain to the catalytic core of MetRS can functionally replace the yeast Arc1p-MetRS complex.
    Karanasios E; Boleti H; Simos G
    J Mol Biol; 2008 Sep; 381(3):763-71. PubMed ID: 18598703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases.
    Pham Y; Li L; Kim A; Erdogan O; Weinreb V; Butterfoss GL; Kuhlman B; Carter CW
    Mol Cell; 2007 Mar; 25(6):851-62. PubMed ID: 17386262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aminoacyl-tRNA synthetases and amino acid signaling.
    Yu YC; Han JM; Kim S
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118889. PubMed ID: 33091505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases.
    Kim JH; Han JM; Kim S
    Top Curr Chem; 2014; 344():119-44. PubMed ID: 24072587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinants in tRNA for activation of arginyl-tRNA synthetase: evidence that tRNA flexibility is required for the induced-fit mechanism.
    Guigou L; Mirande M
    Biochemistry; 2005 Dec; 44(50):16540-8. PubMed ID: 16342945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous binding of two proteins to opposite sides of a single transfer RNA.
    Nomanbhoy T; Morales AJ; Abraham AT; Vörtler CS; Giegé R; Schimmel P
    Nat Struct Biol; 2001 Apr; 8(4):344-8. PubMed ID: 11276256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Existence of two forms of rat liver arginyl-tRNA synthetase suggests channeling of aminoacyl-tRNA for protein synthesis.
    Sivaram P; Deutscher MP
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3665-9. PubMed ID: 2187187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases.
    Lukash TO; Turkivska HV; Negrutskii BS; El'skaya AV
    Int J Biochem Cell Biol; 2004 Jul; 36(7):1341-7. PubMed ID: 15109577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.