BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15287881)

  • 1. MAP kinases in the mammalian circadian system--key regulators of clock function.
    Coogan AN; Piggins HD
    J Neurochem; 2004 Aug; 90(4):769-75. PubMed ID: 15287881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock.
    Akashi M; Nishida E
    Genes Dev; 2000 Mar; 14(6):645-9. PubMed ID: 10733524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway.
    Antle MC; Tse F; Koke SJ; Sterniczuk R; Hagel K
    Eur J Neurosci; 2008 Dec; 28(12):2511-8. PubMed ID: 19087176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons.
    Doi M; Cho S; Yujnovsky I; Hirayama J; Cermakian N; Cato AC; Sassone-Corsi P
    J Biol Rhythms; 2007 Apr; 22(2):127-39. PubMed ID: 17440214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling in the mammalian circadian clock: the NO/cGMP pathway.
    Golombek DA; Agostino PV; Plano SA; Ferreyra GA
    Neurochem Int; 2004 Nov; 45(6):929-36. PubMed ID: 15312987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive activation of the ERK-MAPK pathway in the suprachiasmatic nuclei inhibits circadian resetting.
    Hainich EC; Pizzio GA; Golombek DA
    FEBS Lett; 2006 Dec; 580(28-29):6665-8. PubMed ID: 17125769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive activation of ras in neurons: implications for the regulation of the mammalian circadian clock.
    Serchov T; Heumann R
    Chronobiol Int; 2006; 23(1-2):191-200. PubMed ID: 16687293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling to the mammalian circadian clocks: in pursuit of the primary mammalian circadian photoreceptor.
    Pando MP; Sassone-Corsi P
    Sci STKE; 2001 Nov; 2001(107):re16. PubMed ID: 11698692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian circadian signaling networks and therapeutic targets.
    Liu AC; Lewis WG; Kay SA
    Nat Chem Biol; 2007 Oct; 3(10):630-9. PubMed ID: 17876320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The biological clock in mammals: structure and function].
    Lewandowski MH
    Postepy Hig Med Dosw; 1999; 53(3):405-22. PubMed ID: 10424131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasoactive intestinal polypeptide phase-advances the rat suprachiasmatic nuclei circadian pacemaker in vitro via protein kinase A and mitogen-activated protein kinase.
    Meyer-Spasche A; Piggins HD
    Neurosci Lett; 2004 Mar; 358(2):91-4. PubMed ID: 15026156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of neuronal membrane events in circadian rhythm generation.
    Lundkvist GB; Block GD
    Methods Enzymol; 2005; 393():623-42. PubMed ID: 15817316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian rhythms. Integrating circadian timekeeping with cellular physiology.
    Harrisingh MC; Nitabach MN
    Science; 2008 May; 320(5878):879-80. PubMed ID: 18487177
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrophysiology of the suprachiasmatic circadian clock.
    Brown TM; Piggins HD
    Prog Neurobiol; 2007 Aug; 82(5):229-55. PubMed ID: 17646042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinase and phosphatase: the cog and spring of the circadian clock.
    Mizoguchi T; Putterill J; Ohkoshi Y
    Int Rev Cytol; 2006; 250():47-72. PubMed ID: 16861063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; PĂ©vet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilevel regulation of the circadian clock.
    Cermakian N; Sassone-Corsi P
    Nat Rev Mol Cell Biol; 2000 Oct; 1(1):59-67. PubMed ID: 11413490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?
    Guilding C; Piggins HD
    Eur J Neurosci; 2007 Jun; 25(11):3195-216. PubMed ID: 17552989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clock genes, circadian rhythms and food intake].
    Challet E
    Pathol Biol (Paris); 2007; 55(3-4):176-7. PubMed ID: 17412526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties, entrainment, and physiological functions of mammalian peripheral oscillators.
    Stratmann M; Schibler U
    J Biol Rhythms; 2006 Dec; 21(6):494-506. PubMed ID: 17107939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.