These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1062 related articles for article (PubMed ID: 15288063)
1. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Near TJ; Pesavento JJ; Cheng CH Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Near TJ; Cheng CH Mol Phylogenet Evol; 2008 May; 47(2):832-40. PubMed ID: 18249562 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Westneat MW; Alfaro ME Mol Phylogenet Evol; 2005 Aug; 36(2):370-90. PubMed ID: 15955516 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Flynn JJ; Finarelli JA; Zehr S; Hsu J; Nedbal MA Syst Biol; 2005 Apr; 54(2):317-37. PubMed ID: 16012099 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic studies of sinipercid fish (Perciformes: Sinipercidae) based on multiple genes, with first application of an immune-related gene, the virus-induced protein (viperin) gene. Chen D; Guo X; Nie P Mol Phylogenet Evol; 2010 Jun; 55(3):1167-76. PubMed ID: 20138219 [TBL] [Abstract][Full Text] [Related]
6. Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses. Doiuchi R; Nakabo T Mol Phylogenet Evol; 2006 Apr; 39(1):111-23. PubMed ID: 16314116 [TBL] [Abstract][Full Text] [Related]
7. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). RĂ¼ber L; Britz R; Zardoya R Syst Biol; 2006 Jun; 55(3):374-97. PubMed ID: 16861206 [TBL] [Abstract][Full Text] [Related]
8. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes). Li J; Wang X; Kong X; Zhao K; He S; Mayden RL Mol Phylogenet Evol; 2008 May; 47(2):472-87. PubMed ID: 18378468 [TBL] [Abstract][Full Text] [Related]
9. Investigating phylogenetic relationships of sunfishes and black basses (Actinopterygii: Centrarchidae) using DNA sequences from mitochondrial and nuclear genes. Near TJ; Bolnick DI; Wainwright PC Mol Phylogenet Evol; 2004 Jul; 32(1):344-57. PubMed ID: 15186819 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Ritchie PA; Bargelloni L; Meyer A; Taylor JA; Macdonald JA; Lambert DM Mol Phylogenet Evol; 1996 Apr; 5(2):383-90. PubMed ID: 8728396 [TBL] [Abstract][Full Text] [Related]
12. Molecular phylogenetics and ecological diversification of the transisthmian fish genus Centropomus (Perciformes: Centropomidae). Tringali MD; Bert TM; Seyoum S; Bermingham E; Bartolacci D Mol Phylogenet Evol; 1999 Oct; 13(1):193-207. PubMed ID: 10508552 [TBL] [Abstract][Full Text] [Related]
13. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae). Near TJ; Bossu CM; Bradburd GS; Carlson RL; Harrington RC; Hollingsworth PR; Keck BP; Etnier DA Syst Biol; 2011 Oct; 60(5):565-95. PubMed ID: 21775340 [TBL] [Abstract][Full Text] [Related]
14. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas. Jennings WB; Pianka ER; Donnellan S Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116 [TBL] [Abstract][Full Text] [Related]
15. Biogeography and evolution of body size and life history of African frogs: phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data. Blackburn DC Mol Phylogenet Evol; 2008 Dec; 49(3):806-26. PubMed ID: 18804169 [TBL] [Abstract][Full Text] [Related]
16. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660 [TBL] [Abstract][Full Text] [Related]
17. Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data. Weisrock DW; Harmon LJ; Larson A Syst Biol; 2005 Oct; 54(5):758-77. PubMed ID: 16243763 [TBL] [Abstract][Full Text] [Related]
18. Is homoplasy or lineage sorting the source of incongruent mtdna and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? McCracken K; Sorenson M Syst Biol; 2005 Feb; 54(1):35-55. PubMed ID: 15805009 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic investigations of the stephanoberyciformes and beryciformes, particularly whalefishes (Euteleostei: Cetomimidae), based on partial 12S rDNA and 16S rDNA sequences. Colgan DJ; Zhang C; Paxton JR Mol Phylogenet Evol; 2000 Oct; 17(1):15-25. PubMed ID: 11020301 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic relationships of Hynobius naevius (Amphibia: Caudata) as revealed by mitochondrial 12S and 16S rRNA genes. Tominaga A; Matsui M; Nishikawa K; Tanabe S Mol Phylogenet Evol; 2006 Mar; 38(3):677-84. PubMed ID: 16337138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]