BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 15288128)

  • 1. Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO.
    Shinyashiki M; Pan CJ; Lopez BE; Fukuto JM
    Free Radic Biol Med; 2004 Sep; 37(5):713-23. PubMed ID: 15288128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase.
    Shatwell KP; Dancis A; Cross AR; Klausner RD; Segal AW
    J Biol Chem; 1996 Jun; 271(24):14240-4. PubMed ID: 8662973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
    Hassett R; Kosman DJ
    J Biol Chem; 1995 Jan; 270(1):128-34. PubMed ID: 7814363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization.
    Rees EM; Thiele DJ
    J Biol Chem; 2007 Jul; 282(30):21629-38. PubMed ID: 17553781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase.
    Finegold AA; Shatwell KP; Segal AW; Klausner RD; Dancis A
    J Biol Chem; 1996 Dec; 271(49):31021-4. PubMed ID: 8940093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
    Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD
    J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.
    Dancis A; Roman DG; Anderson GJ; Hinnebusch AG; Klausner RD
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3869-73. PubMed ID: 1570306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic analysis of nitrosative stress.
    Foster MW; Liu L; Zeng M; Hess DT; Stamler JS
    Biochemistry; 2009 Feb; 48(4):792-9. PubMed ID: 19138101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae.
    Amillet JM; Galiazzo F; Labbe-Bois R
    FEMS Microbiol Lett; 1996 Mar; 137(1):25-9. PubMed ID: 8935653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.
    Ramalho PA; Paiva S; Cavaco-Paulo A; Casal M; Cardoso MH; Ramalho MT
    Appl Environ Microbiol; 2005 Jul; 71(7):3882-8. PubMed ID: 16000801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane.
    Kwok EY; Severance S; Kosman DJ
    Biochemistry; 2006 May; 45(20):6317-27. PubMed ID: 16700543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.
    Lesuisse E; Casteras-Simon M; Labbe P
    J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic approach to elucidating eukaryotic iron metabolism.
    Klausner RD; Dancis A
    FEBS Lett; 1994 Nov; 355(2):109-13. PubMed ID: 7982480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells.
    Duerrschmidt N; Stielow C; Muller G; Pagano PJ; Morawietz H
    J Physiol; 2006 Oct; 576(Pt 2):557-67. PubMed ID: 16873416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae.
    Lesuisse E; Casteras-Simon M; Labbe P
    FEMS Microbiol Lett; 1997 Nov; 156(1):147-52. PubMed ID: 9368374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aminoesters as inhibitors of plasma membrane H+-ATPase in the yeast Saccharomyces cerevisiae.
    Obłak E; Lachowicz TM; Luczyński J; Witek S
    Cell Mol Biol Lett; 2004; 9(4A):755-63. PubMed ID: 15647796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox).
    Choi HS; Cha YN; Kim C
    Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of oxygen and reduced oxygen species in nitric oxide-mediated cytotoxicity: studies in the yeast Saccharomyces cerevisiae model system.
    Chiang KT; Switzer CH; Akali KO; Fukuto JM
    Toxicol Appl Pharmacol; 2000 Aug; 167(1):30-6. PubMed ID: 10936076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engineered bifunctional high affinity iron uptake protein in the yeast plasma membrane.
    Kwok EY; Stoj CS; Severance S; Kosman DJ
    J Inorg Biochem; 2006 May; 100(5-6):1053-60. PubMed ID: 16387364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.