These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 15288621)

  • 1. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans.
    Hube B
    Curr Opin Microbiol; 2004 Aug; 7(4):336-41. PubMed ID: 15288621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida morphogenesis and host-pathogen interactions.
    Whiteway M; Oberholzer U
    Curr Opin Microbiol; 2004 Aug; 7(4):350-7. PubMed ID: 15358253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulation and host adaptation mechanisms in Candida albicans.
    Staib P; Wirsching S; Strauss A; Morschhäuser J
    Int J Med Microbiol; 2001 May; 291(2):183-8. PubMed ID: 11437340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying infection-associated genes of Candida albicans in the postgenomic era.
    Wilson D; Thewes S; Zakikhany K; Fradin C; Albrecht A; Almeida R; Brunke S; Grosse K; Martin R; Mayer F; Leonhardt I; Schild L; Seider K; Skibbe M; Slesiona S; Waechtler B; Jacobsen I; Hube B
    FEMS Yeast Res; 2009 Aug; 9(5):688-700. PubMed ID: 19473261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity.
    Ruiz-Herrera J; Elorza MV; Valentín E; Sentandreu R
    FEMS Yeast Res; 2006 Jan; 6(1):14-29. PubMed ID: 16423067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.
    Liu X; Nie X; Ding Y; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human fungal pathogen Candida albicans in the postgenomic era: an overview.
    Kabir MA; Hussain MA
    Expert Rev Anti Infect Ther; 2009 Feb; 7(1):121-34. PubMed ID: 19622061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination.
    Zakikhany K; Naglik JR; Schmidt-Westhausen A; Holland G; Schaller M; Hube B
    Cell Microbiol; 2007 Dec; 9(12):2938-54. PubMed ID: 17645752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic profiling of serologic response to Candida albicans during host-commensal and host-pathogen interactions.
    Pitarch A; Nombela C; Gil C
    Methods Mol Biol; 2009; 470():369-411. PubMed ID: 19089396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.
    Kumamoto CA; Vinces MD
    Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the Candida albicans cell wall during commensalism and infection.
    Gow NA; Hube B
    Curr Opin Microbiol; 2012 Aug; 15(4):406-12. PubMed ID: 22609181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology, disruption and phenotypic analysis of CaGS Candida albicans gene induced during macrophage infection.
    Luongo M; Porta A; Maresca B
    FEMS Immunol Med Microbiol; 2005 Sep; 45(3):471-8. PubMed ID: 16084700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk.
    Poulain D; Jouault T
    Curr Opin Microbiol; 2004 Aug; 7(4):342-9. PubMed ID: 15358252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans.
    Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP
    J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen.
    Liu H
    Int J Med Microbiol; 2002 Oct; 292(5-6):299-311. PubMed ID: 12452278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans.
    Mao X; Li Y; Wang H; Cao F; Chen J
    FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.