BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 1528869)

  • 1. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting.
    Jauch A; Wienberg J; Stanyon R; Arnold N; Tofanelli S; Ishida T; Cremer T
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8611-5. PubMed ID: 1528869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization.
    Koehler U; Arnold N; Wienberg J; Tofanelli S; Stanyon R
    Am J Phys Anthropol; 1995 May; 97(1):37-47. PubMed ID: 7645672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of complex chromosome rearrangements in the gibbon by fluorescent in situ hybridization (FISH) of a human chromosome 2q specific microlibrary, yeast artificial chromosomes, and reciprocal chromosome painting.
    Arnold N; Stanyon R; Jauch A; O'Brien P; Wienberg J
    Cytogenet Cell Genet; 1996; 74(1-2):80-5. PubMed ID: 8893807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting.
    Koehler U; Bigoni F; Wienberg J; Stanyon R
    Genomics; 1995 Nov; 30(2):287-92. PubMed ID: 8586429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative fluorescence in situ hybridization mapping of primate chromosomes with Alu polymerase chain reaction generated probes from human/rodent somatic cell hybrids.
    Müller S; Koehler U; Weinberg J; Marzella R; Finelli P; Antonacci R; Rocchi M; Archidiacono N
    Chromosome Res; 1996 Jan; 4(1):38-42. PubMed ID: 8653267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.
    Misceo D; Capozzi O; Roberto R; Dell'oglio MP; Rocchi M; Stanyon R; Archidiacono N
    Genome Res; 2008 Sep; 18(9):1530-7. PubMed ID: 18552313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal phylogeny and evolution of gibbons (Hylobatidae).
    Müller S; Hollatz M; Wienberg J
    Hum Genet; 2003 Nov; 113(6):493-501. PubMed ID: 14569461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A comparative chromosome map between human and Hylobates hoolock built by chromosome painting].
    Yu D; Yang F; Liu R
    Yi Chuan Xue Bao; 1997 Oct; 24(5):417-23. PubMed ID: 9494294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid ape offspring of a mating of gibbon and siamang.
    Myers RH; Shafer DA
    Science; 1979 Jul; 205(4403):308-10. PubMed ID: 451603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Karyotype of the gibbons hylobates lar and h. moloch inversion in chromosome 7.
    Tantravahi R; Dev VG; Firschein IL; Miller DA; Miller OJ
    Cytogenet Cell Genet; 1975; 15(2):92-102. PubMed ID: 1183241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative karyotyping of our gibbon species or subspecies (author's transl)].
    Couturier J; Dutrillaux B; Turleau C; de Grouchy J
    Ann Genet; 1982; 25(1):5-10. PubMed ID: 6979300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal painting shows that "marked chromosomes" in lesser apes and Old World monkeys are not homologous and evolved by convergence.
    Stanyon R; Arnold N; Koehler U; Bigoni F; Wienberg J
    Cytogenet Cell Genet; 1995; 68(1-2):74-8. PubMed ID: 7956365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Karyotype analysis of 2 species of gibbons (Hylobates lar and H. concolor) with different banding species].
    Dutrillaux B; Rethoré MO; Aurias A; Goustard M
    Cytogenet Cell Genet; 1975; 15(2):81-91. PubMed ID: 1183240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Bar-coding" primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype.
    Müller S; Wienberg J
    Hum Genet; 2001 Jul; 109(1):85-94. PubMed ID: 11479739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes.
    Nie W; Rens W; Wang J; Yang F
    Cytogenet Cell Genet; 2001; 92(3-4):248-53. PubMed ID: 11435697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence in situ hybridization analysis of keratinocyte growth factor gene amplification and dispersion in evolution of great apes and humans.
    Zimonjic DB; Kelley MJ; Rubin JS; Aaronson SA; Popescu NC
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11461-5. PubMed ID: 9326632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of C-heterochromatin and telomeric DNA in two representative groups of small apes, the genera Hylobates and Symphalangus.
    Wijayanto H; Hirai Y; Kamanaka Y; Katho A; Sajuthi D; Hirai H
    Chromosome Res; 2005; 13(7):717-24. PubMed ID: 16235121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetic studies of small ape (Hylobatidae) chromosomes.
    Stanyon R
    Tsitologiia; 2013; 55(3):167-71. PubMed ID: 23795459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Symphalangus syndactylus: comparison to related primates.
    Henderson AS; Atwood KC; Warburton D
    Chromosoma; 1976 Dec; 59(2):147-55. PubMed ID: 1009815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative mapping of ZFY in the hominoid apes.
    Müller G; Schempp W
    Hum Genet; 1991 Nov; 88(1):59-63. PubMed ID: 1683646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.