These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 15289069)
1. Engineering the thermotolerance and pH optimum of family 11 xylanases by site-directed mutagenesis. Turunen O; Jänis J; Fenel F; Leisola M Methods Enzymol; 2004; 388():156-67. PubMed ID: 15289069 [No Abstract] [Full Text] [Related]
2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
4. [Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis]. Han C; Yu S; Ouyang J; Li X; Zhou J; Xu Y Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):623-9. PubMed ID: 20684306 [TBL] [Abstract][Full Text] [Related]
5. A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism. Turunen O; Etuaho K; Fenel F; Vehmaanperä J; Wu X; Rouvinen J; Leisola M J Biotechnol; 2001 Jun; 88(1):37-46. PubMed ID: 11377763 [TBL] [Abstract][Full Text] [Related]
6. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin. Kusano M; Yasukawa K; Hashida Y; Inouye K J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052 [TBL] [Abstract][Full Text] [Related]
7. Mode of action and properties of the beta-xylosidases from Talaromyces emersonii and Trichoderma reesei. Rasmussen LE; Sørensen HR; Vind J; Viksø-Nielsen A Biotechnol Bioeng; 2006 Aug; 94(5):869-76. PubMed ID: 16752410 [TBL] [Abstract][Full Text] [Related]
8. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Notenboom V; Birsan C; Nitz M; Rose DR; Warren RA; Withers SG Nat Struct Biol; 1998 Sep; 5(9):812-8. PubMed ID: 9731776 [TBL] [Abstract][Full Text] [Related]
9. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312 [TBL] [Abstract][Full Text] [Related]
10. Increased alkali stability in Trichoderma reesei endo-1, 4-beta-xylanase II by site directed mutagenesis. Fenel F; Zitting AJ; Kantelinen A J Biotechnol; 2006 Jan; 121(1):102-7. PubMed ID: 16139382 [TBL] [Abstract][Full Text] [Related]
11. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6. Shallom D; Leon M; Bravman T; Ben-David A; Zaide G; Belakhov V; Shoham G; Schomburg D; Baasov T; Shoham Y Biochemistry; 2005 Jan; 44(1):387-97. PubMed ID: 15628881 [TBL] [Abstract][Full Text] [Related]
12. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Turunen O; Vuorio M; Fenel F; Leisola M Protein Eng; 2002 Feb; 15(2):141-5. PubMed ID: 11917150 [TBL] [Abstract][Full Text] [Related]
13. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Wakarchuk WW; Sung WL; Campbell RL; Cunningham A; Watson DC; Yaguchi M Protein Eng; 1994 Nov; 7(11):1379-86. PubMed ID: 7700870 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional structure of an alkaline xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5 and improvement of its thermal performance by introducing arginines substitutions. Bai W; Zhou C; Xue Y; Huang CH; Guo RT; Ma Y Biotechnol Lett; 2014 Jul; 36(7):1495-501. PubMed ID: 24682788 [TBL] [Abstract][Full Text] [Related]
15. Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. Watanabe N; Akiba T; Kanai R; Harata K Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):784-92. PubMed ID: 16790934 [TBL] [Abstract][Full Text] [Related]
16. The use of forced protein evolution to investigate and improve stability of family 10 xylanases. The production of Ca2+-independent stable xylanases. Andrews SR; Taylor EJ; Pell G; Vincent F; Ducros VM; Davies GJ; Lakey JH; Gilbert HJ J Biol Chem; 2004 Dec; 279(52):54369-79. PubMed ID: 15452124 [TBL] [Abstract][Full Text] [Related]
17. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Beliën T; Joye IJ; Delcour JA; Courtin CM Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602 [TBL] [Abstract][Full Text] [Related]
18. Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. Qin Y; Wei X; Song X; Qu Y J Biotechnol; 2008 Jun; 135(2):190-5. PubMed ID: 18468710 [TBL] [Abstract][Full Text] [Related]
19. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Fushinobu S; Ito K; Konno M; Wakagi T; Matsuzawa H Protein Eng; 1998 Dec; 11(12):1121-8. PubMed ID: 9930661 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis study of a conserved residue in family 10 glycanases: histidine 86 of xylanase A from Streptomyces lividans. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Protein Eng; 1998 May; 11(5):399-404. PubMed ID: 9681873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]