These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 15289071)
1. Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes. Steipe B Methods Enzymol; 2004; 388():176-86. PubMed ID: 15289071 [No Abstract] [Full Text] [Related]
2. Exploring local and non-local interactions for protein stability by structural motif engineering. Niggemann M; Steipe B J Mol Biol; 2000 Feb; 296(1):181-95. PubMed ID: 10656826 [TBL] [Abstract][Full Text] [Related]
3. Intrabody construction and expression III: engineering hyperstable V(H) domains. Wirtz P; Steipe B Protein Sci; 1999 Nov; 8(11):2245-50. PubMed ID: 10595527 [TBL] [Abstract][Full Text] [Related]
4. Intrabody construction and expression. I. The critical role of VL domain stability. Ohage E; Steipe B J Mol Biol; 1999 Sep; 291(5):1119-28. PubMed ID: 10518947 [TBL] [Abstract][Full Text] [Related]
5. A thermostable enzyme as an experimental platform to study properties of less stable homologues. Lill H; Hisabori T; Groth G; Bald D Protein Eng Des Sel; 2004 Jul; 17(7):553-5. PubMed ID: 15333775 [TBL] [Abstract][Full Text] [Related]
6. Consensus protein design without phylogenetic bias. Jäckel C; Bloom JD; Kast P; Arnold FH; Hilvert D J Mol Biol; 2010 Jun; 399(4):541-6. PubMed ID: 20433850 [TBL] [Abstract][Full Text] [Related]
7. Protein engineering of microbial enzymes. Böttcher D; Bornscheuer UT Curr Opin Microbiol; 2010 Jun; 13(3):274-82. PubMed ID: 20171138 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Arnold U Biotechnol Lett; 2009 Aug; 31(8):1129-39. PubMed ID: 19404746 [TBL] [Abstract][Full Text] [Related]
11. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications. Unsworth LD; van der Oost J; Koutsopoulos S FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334 [TBL] [Abstract][Full Text] [Related]
12. Bioinformatics-driven, rational engineering of protein thermostability. Ditursi MK; Kwon SJ; Reeder PJ; Dordick JS Protein Eng Des Sel; 2006 Nov; 19(11):517-24. PubMed ID: 17003065 [TBL] [Abstract][Full Text] [Related]
13. The creation of a novel fluorescent protein by guided consensus engineering. Dai M; Fisher HE; Temirov J; Kiss C; Phipps ME; Pavlik P; Werner JH; Bradbury AR Protein Eng Des Sel; 2007 Feb; 20(2):69-79. PubMed ID: 17277006 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution of enzyme stability. Eijsink VG; Gåseidnes S; Borchert TV; van den Burg B Biomol Eng; 2005 Jun; 22(1-3):21-30. PubMed ID: 15857780 [TBL] [Abstract][Full Text] [Related]
15. Engineering proteins with tunable thermodynamic and kinetic stabilities. Pey AL; Rodriguez-Larrea D; Bomke S; Dammers S; Godoy-Ruiz R; Garcia-Mira MM; Sanchez-Ruiz JM Proteins; 2008 Apr; 71(1):165-74. PubMed ID: 17932922 [TBL] [Abstract][Full Text] [Related]
16. Rational engineering of enzyme stability. Eijsink VG; Bjørk A; Gåseidnes S; Sirevåg R; Synstad B; van den Burg B; Vriend G J Biotechnol; 2004 Sep; 113(1-3):105-20. PubMed ID: 15380651 [TBL] [Abstract][Full Text] [Related]