BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15289076)

  • 21. Modification of pancreatic lipase properties by directed molecular evolution.
    Colin DY; Deprez-Beauclair P; Silva N; Infantes L; Kerfelec B
    Protein Eng Des Sel; 2010 May; 23(5):365-73. PubMed ID: 20150178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.
    Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ
    Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular evolution of a defined DNA sequence with accumulation of mutations in a single round by a dual approach to random chemical mutagenesis (DuARCheM).
    Mohan U; Banerjee UC
    Chembiochem; 2008 Sep; 9(14):2238-43. PubMed ID: 18756549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A.
    Boersma YL; Dröge MJ; van der Sloot AM; Pijning T; Cool RH; Dijkstra BW; Quax WJ
    Chembiochem; 2008 May; 9(7):1110-5. PubMed ID: 18383241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calmodulin-tagged phage and two-filter sandwich assays for the identification of enzymatic activities.
    Heinis C; Bertschinger J; Neri D
    Methods Mol Biol; 2003; 230():313-28. PubMed ID: 12824592
    [No Abstract]   [Full Text] [Related]  

  • 27. A genetic selection system for evolving enantioselectivity of enzymes.
    Reetz MT; Höbenreich H; Soni P; Fernández L
    Chem Commun (Camb); 2008 Nov; (43):5502-4. PubMed ID: 18997932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput FACS method for directed evolution of substrate specificity.
    Olsen MJ; Gam J; Iverson BL; Georgiou G
    Methods Mol Biol; 2003; 230():329-42. PubMed ID: 12824593
    [No Abstract]   [Full Text] [Related]  

  • 29. Learning from directed evolution: Further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity.
    Reetz MT; Puls M; Carballeira JD; Vogel A; Jaeger KE; Eggert T; Thiel W; Bocola M; Otte N
    Chembiochem; 2007 Jan; 8(1):106-12. PubMed ID: 17133645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.
    Reetz MT
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):138-74. PubMed ID: 20715024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directed evolution of aldolases.
    Franke D; Hsu CC; Wong CH
    Methods Enzymol; 2004; 388():224-38. PubMed ID: 15289075
    [No Abstract]   [Full Text] [Related]  

  • 33. Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS).
    Santoro SW; Schultz PG
    Methods Mol Biol; 2003; 230():291-312. PubMed ID: 12824591
    [No Abstract]   [Full Text] [Related]  

  • 34. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing.
    Reetz MT; Carballeira JD; Peyralans J; Höbenreich H; Maichele A; Vogel A
    Chemistry; 2006 Aug; 12(23):6031-8. PubMed ID: 16789057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-frame cloning of synthetic genes using PCR inserts.
    Pierce JC
    Methods Mol Biol; 2002; 192():175-87. PubMed ID: 12494650
    [No Abstract]   [Full Text] [Related]  

  • 36. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
    Ema T; Fujii T; Ozaki M; Korenaga T; Sakai T
    Chem Commun (Camb); 2005 Oct; (37):4650-1. PubMed ID: 16175280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection.
    Dröge MJ; Boersma YL; van Pouderoyen G; Vrenken TE; Rüggeberg CJ; Reetz MT; Dijkstra BW; Quax WJ
    Chembiochem; 2006 Jan; 7(1):149-57. PubMed ID: 16342303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution.
    Zha D; Eipper A; Reetz MT
    Chembiochem; 2003 Jan; 4(1):34-9. PubMed ID: 12512074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.