These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1528989)
1. Studies on human lenses: II. Distribution and solubility of fluorescent pigments in cataractous and non-cataractous lenses of Indian origin. Bandyopadhyay S; Chattopadhyay D; Ghosh SK; Chakrabarti B Photochem Photobiol; 1992 May; 55(5):765-72. PubMed ID: 1528989 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
3. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
5. Comparison of specific blue and green fluorescence in cataractous versus normal human lens fractions. Yappert MC; Borchman D; Byrdwell WC Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):630-6. PubMed ID: 8449681 [TBL] [Abstract][Full Text] [Related]
6. Studies on human lens: I. Origin and development of fluorescent pigments. Sen AC; Ueno N; Chakrabarti B Photochem Photobiol; 1992 May; 55(5):753-64. PubMed ID: 1528988 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
8. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
9. Structural characterization of lipid membranes from clear and cataractous human lenses. Borchman D; Lamba OP; Yappert MC Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186 [TBL] [Abstract][Full Text] [Related]
10. Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses. Garner B; Roberg K; Qian M; Eaton JW; Truscott RJ Exp Eye Res; 2000 Dec; 71(6):599-607. PubMed ID: 11095912 [TBL] [Abstract][Full Text] [Related]
11. Dehydroalanine crosslinks in human lens. Linetsky M; Hill JM; LeGrand RD; Hu F Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034 [TBL] [Abstract][Full Text] [Related]
12. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract. Garner B; Davies MJ; Truscott RJ Exp Eye Res; 2000 Jan; 70(1):81-8. PubMed ID: 10644423 [TBL] [Abstract][Full Text] [Related]
13. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses. Ortwerth BJ; Chemoganskiy V; Olesen PR Exp Eye Res; 2002 Feb; 74(2):217-29. PubMed ID: 11950232 [TBL] [Abstract][Full Text] [Related]
14. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
15. Increase in lens gangliosides due to aging and cataract progression in human senile cataract. Ogiso M; Saito N; Sudo K; Kubo H; Hirano S; Komoto M Invest Ophthalmol Vis Sci; 1990 Oct; 31(10):2171-9. PubMed ID: 2211013 [TBL] [Abstract][Full Text] [Related]
16. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP; Srivastava K Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643 [TBL] [Abstract][Full Text] [Related]
17. Effect of opacification and pigmentation on human lens protein thiol/disulfide and solubility. Lou MF; Huang QL; Zigler JS Curr Eye Res; 1989 Sep; 8(9):883-90. PubMed ID: 2791632 [TBL] [Abstract][Full Text] [Related]
18. Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract. Korlimbinis A; Truscott RJ Biochemistry; 2006 Feb; 45(6):1950-60. PubMed ID: 16460042 [TBL] [Abstract][Full Text] [Related]
19. Relationship between lens protein glycation and membrane structure in human cataract. Scalbert P; Birlouez-Aragon I Exp Eye Res; 1993 Mar; 56(3):335-40. PubMed ID: 8472788 [TBL] [Abstract][Full Text] [Related]
20. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Sweeney MH; Truscott RJ Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]