BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15292216)

  • 1. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function.
    Biswas A; Das KP
    J Biol Chem; 2004 Oct; 279(41):42648-57. PubMed ID: 15292216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone.
    Acosta-Sampson L; King J
    J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-crystallin assisted refolding of enzyme substrates: optimization of external parameters.
    Biswas A; Das KP
    Protein J; 2007 Jun; 26(4):247-55. PubMed ID: 17211683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit exchange demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW- and individual gamma-crystallins.
    Putilina T; Skouri-Panet F; Prat K; Lubsen NH; Tardieu A
    J Biol Chem; 2003 Apr; 278(16):13747-56. PubMed ID: 12562766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification.
    Satish Kumar M; Mrudula T; Mitra N; Bhanuprakash Reddy G
    Exp Eye Res; 2004 Oct; 79(4):577-83. PubMed ID: 15381041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification.
    Nagaraj RH; Oya-Ito T; Padayatti PS; Kumar R; Mehta S; West K; Levison B; Sun J; Crabb JW; Padival AK
    Biochemistry; 2003 Sep; 42(36):10746-55. PubMed ID: 12962499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn2+ enhances the molecular chaperone function and stability of alpha-crystallin.
    Biswas A; Das KP
    Biochemistry; 2008 Jan; 47(2):804-16. PubMed ID: 18095658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions.
    Nath D; Rawat U; Anish R; Rao M
    Protein Sci; 2002 Nov; 11(11):2727-34. PubMed ID: 12381854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small heat shock protein activity is regulated by variable oligomeric substructure.
    Benesch JL; Ayoub M; Robinson CV; Aquilina JA
    J Biol Chem; 2008 Oct; 283(42):28513-7. PubMed ID: 18713743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency.
    Grosas AB; Rekas A; Mata JP; Thorn DC; Carver JA
    J Mol Biol; 2020 Sep; 432(20):5593-5613. PubMed ID: 32827531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between small heat shock protein alpha-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens.
    Barton KA; Hsu CD; Petrash JM
    Biochemistry; 2009 May; 48(18):3956-66. PubMed ID: 19296714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: an isothermal titration calorimetric study.
    Kumar MS; Kapoor M; Sinha S; Reddy GB
    J Biol Chem; 2005 Jun; 280(23):21726-30. PubMed ID: 15817465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-crystallin binds to the aggregation-prone molten-globule state of alkaline protease: implications for preventing irreversible thermal denaturation.
    Tanksale A; Ghatge M; Deshpande V
    Protein Sci; 2002 Jul; 11(7):1720-8. PubMed ID: 12070325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity.
    Devlin GL; Carver JA; Bottomley SP
    J Biol Chem; 2003 Dec; 278(49):48644-50. PubMed ID: 14500715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of γ-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone α-crystallin.
    Ghosh KS; Pande A; Pande J
    Biochemistry; 2011 Apr; 50(16):3279-81. PubMed ID: 21417258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins.
    Mishra S; Stein RA; McHaourab HS
    FEBS Lett; 2012 Feb; 586(4):330-6. PubMed ID: 22289178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin.
    Sharma KK; Kumar RS; Kumar GS; Quinn PT
    J Biol Chem; 2000 Feb; 275(6):3767-71. PubMed ID: 10660525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.