These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 15292216)
1. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. Biswas A; Das KP J Biol Chem; 2004 Oct; 279(41):42648-57. PubMed ID: 15292216 [TBL] [Abstract][Full Text] [Related]
2. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. Acosta-Sampson L; King J J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668 [TBL] [Abstract][Full Text] [Related]
3. Alpha-crystallin assisted refolding of enzyme substrates: optimization of external parameters. Biswas A; Das KP Protein J; 2007 Jun; 26(4):247-55. PubMed ID: 17211683 [TBL] [Abstract][Full Text] [Related]
4. Subunit exchange demonstrates a differential chaperone activity of calf alpha-crystallin toward beta LOW- and individual gamma-crystallins. Putilina T; Skouri-Panet F; Prat K; Lubsen NH; Tardieu A J Biol Chem; 2003 Apr; 278(16):13747-56. PubMed ID: 12562766 [TBL] [Abstract][Full Text] [Related]
5. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498 [TBL] [Abstract][Full Text] [Related]
6. Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification. Satish Kumar M; Mrudula T; Mitra N; Bhanuprakash Reddy G Exp Eye Res; 2004 Oct; 79(4):577-83. PubMed ID: 15381041 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification. Nagaraj RH; Oya-Ito T; Padayatti PS; Kumar R; Mehta S; West K; Levison B; Sun J; Crabb JW; Padival AK Biochemistry; 2003 Sep; 42(36):10746-55. PubMed ID: 12962499 [TBL] [Abstract][Full Text] [Related]
8. Zn2+ enhances the molecular chaperone function and stability of alpha-crystallin. Biswas A; Das KP Biochemistry; 2008 Jan; 47(2):804-16. PubMed ID: 18095658 [TBL] [Abstract][Full Text] [Related]
9. Alpha-crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions. Nath D; Rawat U; Anish R; Rao M Protein Sci; 2002 Nov; 11(11):2727-34. PubMed ID: 12381854 [TBL] [Abstract][Full Text] [Related]
10. Small heat shock protein activity is regulated by variable oligomeric substructure. Benesch JL; Ayoub M; Robinson CV; Aquilina JA J Biol Chem; 2008 Oct; 283(42):28513-7. PubMed ID: 18713743 [TBL] [Abstract][Full Text] [Related]
11. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency. Grosas AB; Rekas A; Mata JP; Thorn DC; Carver JA J Mol Biol; 2020 Sep; 432(20):5593-5613. PubMed ID: 32827531 [TBL] [Abstract][Full Text] [Related]
12. Interactions between small heat shock protein alpha-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Barton KA; Hsu CD; Petrash JM Biochemistry; 2009 May; 48(18):3956-66. PubMed ID: 19296714 [TBL] [Abstract][Full Text] [Related]
13. Insights into hydrophobicity and the chaperone-like function of alphaA- and alphaB-crystallins: an isothermal titration calorimetric study. Kumar MS; Kapoor M; Sinha S; Reddy GB J Biol Chem; 2005 Jun; 280(23):21726-30. PubMed ID: 15817465 [TBL] [Abstract][Full Text] [Related]
14. Alpha-crystallin binds to the aggregation-prone molten-globule state of alkaline protease: implications for preventing irreversible thermal denaturation. Tanksale A; Ghatge M; Deshpande V Protein Sci; 2002 Jul; 11(7):1720-8. PubMed ID: 12070325 [TBL] [Abstract][Full Text] [Related]
15. The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity. Devlin GL; Carver JA; Bottomley SP J Biol Chem; 2003 Dec; 278(49):48644-50. PubMed ID: 14500715 [TBL] [Abstract][Full Text] [Related]
16. Binding of γ-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone α-crystallin. Ghosh KS; Pande A; Pande J Biochemistry; 2011 Apr; 50(16):3279-81. PubMed ID: 21417258 [TBL] [Abstract][Full Text] [Related]
17. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity. Pasta SY; Raman B; Ramakrishna T; Rao ChM J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146 [TBL] [Abstract][Full Text] [Related]
18. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]