BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15292270)

  • 1. A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide.
    McFarland MJ; Porter AC; Rakhshan FR; Rawat DS; Gibbs RA; Barker EL
    J Biol Chem; 2004 Oct; 279(40):41991-7. PubMed ID: 15292270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA interference-mediated knockdown of dynamin 2 reduces endocannabinoid uptake into neuronal dCAD cells.
    McFarland MJ; Bardell TK; Yates ML; Placzek EA; Barker EL
    Mol Pharmacol; 2008 Jul; 74(1):101-8. PubMed ID: 18436710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide.
    Day TA; Rakhshan F; Deutsch DG; Barker EL
    Mol Pharmacol; 2001 Jun; 59(6):1369-75. PubMed ID: 11353795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological characterization of endocannabinoid transport and fatty acid amide hydrolase inhibitors.
    Dickason-Chesterfield AK; Kidd SR; Moore SA; Schaus JM; Liu B; Nomikos GG; Felder CC
    Cell Mol Neurobiol; 2006; 26(4-6):407-23. PubMed ID: 16736384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detergent-resistant membrane microdomains in the disposition of the lipid signaling molecule anandamide.
    McFarland MJ; Terebova EA; Barker EL
    AAPS J; 2006 Mar; 8(1):E95-100. PubMed ID: 16584138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system.
    Barnett-Norris J; Lynch D; Reggio PH
    Life Sci; 2005 Aug; 77(14):1625-39. PubMed ID: 15993425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172.
    Fegley D; Kathuria S; Mercier R; Li C; Goutopoulos A; Makriyannis A; Piomelli D
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8756-61. PubMed ID: 15138300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake.
    Thors L; Eriksson J; Fowler CJ
    Br J Pharmacol; 2007 Nov; 152(5):744-50. PubMed ID: 17676056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for recycling and biosynthesis of endogenous cannabinoids anandamide and 2-arachidonylglycerol.
    Placzek EA; Okamoto Y; Ueda N; Barker EL
    J Neurochem; 2008 Nov; 107(4):987-1000. PubMed ID: 18778304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocannabinoids in the intact retina: 3 H-anandamide uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of anandamide.
    Glaser ST; Deutsch DG; Studholme KM; Zimov S; Yazulla S
    Vis Neurosci; 2005; 22(6):693-705. PubMed ID: 16469181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and metabolism of [3H]anandamide by rabbit platelets. Lack of transporter?
    Fasia L; Karava V; Siafaka-Kapadai A
    Eur J Biochem; 2003 Sep; 270(17):3498-506. PubMed ID: 12919314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitric oxide donors on membrane tritium accumulation of endocannabinoids and related endogenous lipids.
    Thors L; Fowler CJ
    Eur J Pharmacol; 2009 Oct; 621(1-3):10-8. PubMed ID: 19715690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake.
    Ortega-Gutiérrez S; Hawkins EG; Viso A; López-Rodríguez ML; Cravatt BF
    Biochemistry; 2004 Jun; 43(25):8184-90. PubMed ID: 15209515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the endocannabinoid system by lipid rafts.
    Dainese E; Oddi S; Bari M; Maccarrone M
    Curr Med Chem; 2007; 14(25):2702-15. PubMed ID: 17979719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex vivo imaging of fatty acid amide hydrolase activity and its inhibition in the mouse brain.
    Glaser ST; Gatley SJ; Gifford AN
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1088-97. PubMed ID: 16278311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase.
    Deutsch DG; Glaser ST; Howell JM; Kunz JS; Puffenbarger RA; Hillard CJ; Abumrad N
    J Biol Chem; 2001 Mar; 276(10):6967-73. PubMed ID: 11118429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the intracellular accumulation of anandamide in adiposomes.
    Oddi S; Fezza F; Pasquariello N; De Simone C; Rapino C; Dainese E; Finazzi-Agrò A; Maccarrone M
    Cell Mol Life Sci; 2008 Mar; 65(5):840-50. PubMed ID: 18213445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of fatty acid amide hydrolase and fatty acid binding protein 5 in the uptake of anandamide by cell lines with different levels of fatty acid amide hydrolase expression: a pharmacological study.
    Björklund E; Blomqvist A; Hedlin J; Persson E; Fowler CJ
    PLoS One; 2014; 9(7):e103479. PubMed ID: 25078278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide.
    Di Marzo V; Bisogno T; Sugiura T; Melck D; De Petrocellis L
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):15-9. PubMed ID: 9512456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organized trafficking of anandamide and related lipids.
    Yates ML; Barker EL
    Vitam Horm; 2009; 81():25-53. PubMed ID: 19647107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.