These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15292521)

  • 1. Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy.
    Sartorelli V; Fulco M
    Sci STKE; 2004 Jul; 2004(244):re11. PubMed ID: 15292521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects.
    Boonyarom O; Inui K
    Acta Physiol (Oxf); 2006 Oct; 188(2):77-89. PubMed ID: 16948795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of muscle atrophy: wasting away from the outside in: an introduction.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1856-9. PubMed ID: 19727029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness.
    Ryall JG; Schertzer JD; Lynch GS
    Biogerontology; 2008 Aug; 9(4):213-28. PubMed ID: 18299960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle: increasing the size of the locomotor cell.
    Karagounis LG; Hawley JA
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1376-9. PubMed ID: 20541033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myotendinous plasticity to ageing and resistance exercise in humans.
    Reeves ND; Narici MV; Maganaris CN
    Exp Physiol; 2006 May; 91(3):483-98. PubMed ID: 16469817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of IGF-I in skeletal muscle mass maintenance.
    Clemmons DR
    Trends Endocrinol Metab; 2009 Sep; 20(7):349-56. PubMed ID: 19729319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat.
    Shavlakadze T; Grounds M
    Bioessays; 2006 Oct; 28(10):994-1009. PubMed ID: 16998828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of muscle atrophy.
    McKinnell IW; Rudnicki MA
    Cell; 2004 Dec; 119(7):907-10. PubMed ID: 15620349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A signaling role for dystrophin: inhibiting skeletal muscle atrophy pathways.
    Glass DJ
    Cancer Cell; 2005 Nov; 8(5):351-2. PubMed ID: 16286242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in the structure and function of skeletal muscles.
    Faulkner JA; Larkin LM; Claflin DR; Brooks SV
    Clin Exp Pharmacol Physiol; 2007 Nov; 34(11):1091-6. PubMed ID: 17880359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin.
    Gilson H; Schakman O; Kalista S; Lause P; Tsuchida K; Thissen JP
    Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E157-64. PubMed ID: 19435857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling mechanisms involved in disuse muscle atrophy.
    Zhang P; Chen X; Fan M
    Med Hypotheses; 2007; 69(2):310-21. PubMed ID: 17376604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle.
    Marzetti E; Lawler JM; Hiona A; Manini T; Seo AY; Leeuwenburgh C
    Free Radic Biol Med; 2008 Jan; 44(2):160-8. PubMed ID: 18191752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance exercise, muscle loading/unloading and the control of muscle mass.
    Baar K; Nader G; Bodine S
    Essays Biochem; 2006; 42():61-74. PubMed ID: 17144880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myostatin and its precursor protein are increased in the skeletal muscle of patients with Type-II muscle fibre atrophy.
    Wójcik S; Nogalska A; Engel WK; Askanas V
    Folia Morphol (Warsz); 2008 Feb; 67(1):6-12. PubMed ID: 18335407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possible role of myostatin in skeletal muscle atrophy and cachexia.
    Jespersen J; Kjaer M; Schjerling P
    Scand J Med Sci Sports; 2006 Apr; 16(2):74-82. PubMed ID: 16533345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrophy and programmed cell death of skeletal muscle.
    Schwartz LM
    Cell Death Differ; 2008 Jul; 15(7):1163-9. PubMed ID: 18483492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calpains in muscle wasting.
    Bartoli M; Richard I
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2115-33. PubMed ID: 16125114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.