These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 15292990)
21. Pyrenophora bromi, causal agent of brownspot of bromegrass, expresses a gene encoding a protein with homology and similar activity to Ptr ToxB, a host-selective toxin of wheat. Andrie RM; Ciuffetti LM Mol Plant Microbe Interact; 2011 Mar; 24(3):359-67. PubMed ID: 21091157 [TBL] [Abstract][Full Text] [Related]
22. Kamel S; Cherif M; Hafez M; Despins T; Aboukhaddour R Front Plant Sci; 2019; 10():1562. PubMed ID: 31921233 [TBL] [Abstract][Full Text] [Related]
23. Identification of a Locus Conferring Dominant Susceptibility to Wei B; Moscou MJ; Sato K; Gourlie R; Strelkov S; Aboukhaddour R Front Plant Sci; 2020; 11():158. PubMed ID: 32180780 [TBL] [Abstract][Full Text] [Related]
24. Characterization of the ToxB gene from Pyrenophora tritici-repentis. Martinez JP; Ottum SA; Ali S; Franci LJ; Ciuffetti LM Mol Plant Microbe Interact; 2001 May; 14(5):675-7. PubMed ID: 11332732 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Martinez JP; Oesch NW; Ciuffetti LM Mol Plant Microbe Interact; 2004 May; 17(5):467-74. PubMed ID: 15141950 [TBL] [Abstract][Full Text] [Related]
26. PacBio genome sequencing reveals new insights into the genomic organisation of the multi-copy ToxB gene of the wheat fungal pathogen Pyrenophora tritici-repentis. Moolhuijzen P; See PT; Moffat CS BMC Genomics; 2020 Sep; 21(1):645. PubMed ID: 32957933 [TBL] [Abstract][Full Text] [Related]
27. A Novel Source of Resistance in Wheat to Pyrenophora tritici-repentis Race 1. Singh S; Bockus WW; Sharma I; Bowden RL Plant Dis; 2008 Jan; 92(1):91-95. PubMed ID: 30786378 [TBL] [Abstract][Full Text] [Related]
28. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. Liu Z; Zurn JD; Kariyawasam G; Faris JD; Shi G; Hansen J; Rasmussen JB; Acevedo M Theor Appl Genet; 2017 Jun; 130(6):1267-1276. PubMed ID: 28293708 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: a host-specific toxin from the fungal pathogen Pyrenophora tritici-repentis. Kim YM; Bouras N; Kav NN; Strelkov SE Proteomics; 2010 Aug; 10(16):2911-26. PubMed ID: 20540119 [TBL] [Abstract][Full Text] [Related]
30. Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. Dinglasan EG; Peressini T; Marathamuthu KA; See PT; Snyman L; Platz G; Godwin I; Voss-Fels KP; Moffat CS; Hickey LT Theor Appl Genet; 2021 Sep; 134(9):2823-2839. PubMed ID: 34061222 [TBL] [Abstract][Full Text] [Related]
31. Pyrenophora tritici-repentis population structure in the Republic of Kazakhstan and identification of wheat germplasm resistant to tan spot. Kokhmetova AM; Kovalenko NM; Kumarbaeva MT Vavilovskii Zhurnal Genet Selektsii; 2020 Nov; 24(7):722-729. PubMed ID: 33959692 [TBL] [Abstract][Full Text] [Related]
32. Meta-QTL analysis of tan spot resistance in wheat. Liu Y; Salsman E; Wang R; Galagedara N; Zhang Q; Fiedler JD; Liu Z; Xu S; Faris JD; Li X Theor Appl Genet; 2020 Aug; 133(8):2363-2375. PubMed ID: 32436020 [TBL] [Abstract][Full Text] [Related]
33. Solution NMR structures of Pyrenophora tritici-repentis ToxB and its inactive homolog reveal potential determinants of toxin activity. Nyarko A; Singarapu KK; Figueroa M; Manning VA; Pandelova I; Wolpert TJ; Ciuffetti LM; Barbar E J Biol Chem; 2014 Sep; 289(37):25946-56. PubMed ID: 25063993 [TBL] [Abstract][Full Text] [Related]
34. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line. Jakobson I; Reis D; Tiidema A; Peusha H; Timofejeva L; Valárik M; Kladivová M; Simková H; Doležel J; Järve K Theor Appl Genet; 2012 Aug; 125(3):609-23. PubMed ID: 22534789 [TBL] [Abstract][Full Text] [Related]
35. New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch. Virdi SK; Liu Z; Overlander ME; Zhang Z; Xu SS; Friesen TL; Faris JD G3 (Bethesda); 2016 Dec; 6(12):4139-4150. PubMed ID: 27777262 [TBL] [Abstract][Full Text] [Related]
36. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. Abeysekara NS; Faris JD; Chao S; McClean PE; Friesen TL Phytopathology; 2012 Jan; 102(1):94-104. PubMed ID: 21864084 [TBL] [Abstract][Full Text] [Related]
37. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB. Gourlie R; McDonald M; Hafez M; Ortega-Polo R; Low KE; Abbott DW; Strelkov SE; Daayf F; Aboukhaddour R BMC Biol; 2022 Oct; 20(1):239. PubMed ID: 36280878 [TBL] [Abstract][Full Text] [Related]
38. Characterizing Virulence of the Guo J; Shi G; Liu Z Pathogens; 2018 Sep; 7(3):. PubMed ID: 30213041 [TBL] [Abstract][Full Text] [Related]
39. Profiling the Pyrenophora tritici-repentis secretome: The Pf2 transcription factor regulates the secretion of the effector proteins ToxA and ToxB. See PT; Moffat CS Mol Microbiol; 2023 May; 119(5):612-629. PubMed ID: 37059688 [TBL] [Abstract][Full Text] [Related]
40. Genetic analysis of resistance to Pyrenophora tritici-repentis races 1 and 5 in tetraploid and hexaploid wheat. Singh PK; Mergoum M; Ali S; Adhikari TB; Hughes GR Phytopathology; 2008 Jun; 98(6):702-8. PubMed ID: 18944295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]