These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 15293317)
1. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. Smith IO; Baumann MJ; McCabe LR J Biomed Mater Res A; 2004 Sep; 70(3):436-41. PubMed ID: 15293317 [TBL] [Abstract][Full Text] [Related]
2. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Webster TJ; Ejiofor JU Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519 [TBL] [Abstract][Full Text] [Related]
3. A transmission electron microscopy examination of the interface between osteoblasts and metal biomaterials. Garvey BT; Bizios R J Biomed Mater Res; 1995 Aug; 29(8):987-92. PubMed ID: 7593042 [TBL] [Abstract][Full Text] [Related]
4. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619 [TBL] [Abstract][Full Text] [Related]
5. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135 [TBL] [Abstract][Full Text] [Related]
6. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro. Jäger M; Urselmann F; Witte F; Zanger K; Li X; Ayers DC; Krauspe R J Biomed Mater Res A; 2008 Jul; 86(1):61-75. PubMed ID: 17941017 [TBL] [Abstract][Full Text] [Related]
7. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
8. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
9. Better osteoblast adhesion on nanoparticulate selenium- A promising orthopedic implant material. Perla V; Webster TJ J Biomed Mater Res A; 2005 Nov; 75(2):356-64. PubMed ID: 16059879 [TBL] [Abstract][Full Text] [Related]
10. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. Ward BC; Webster TJ Biomaterials; 2006 Jun; 27(16):3064-74. PubMed ID: 16476478 [TBL] [Abstract][Full Text] [Related]
11. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458 [TBL] [Abstract][Full Text] [Related]
12. Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. Smith IO; Baumann MJ; Obadia L; Bouler JM J Mater Sci Mater Med; 2004 Aug; 15(8):841-6. PubMed ID: 15477734 [TBL] [Abstract][Full Text] [Related]
13. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
14. Osteoblast responses to orthopedic implant materials in vitro. Puleo DA; Holleran LA; Doremus RH; Bizios R J Biomed Mater Res; 1991 Jun; 25(6):711-23. PubMed ID: 1874756 [TBL] [Abstract][Full Text] [Related]
15. Electrophoretic and thermodynamic properties for biomaterial particles with Bovine Serum Albumin adsorption. Sánchez-Muñoz OL; Nordström EG; Prérez-Hernández E Biomed Mater Eng; 2003; 13(2):147-58. PubMed ID: 12775905 [TBL] [Abstract][Full Text] [Related]
16. The effect of phase differences on the time-dependent variation of the zeta potential of hydroxyapatite. Ducheyne P; Kim CS; Pollack SR J Biomed Mater Res; 1992 Feb; 26(2):147-68. PubMed ID: 1314836 [TBL] [Abstract][Full Text] [Related]
17. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. McManus AJ; Doremus RH; Siegel RW; Bizios R J Biomed Mater Res A; 2005 Jan; 72(1):98-106. PubMed ID: 15538759 [TBL] [Abstract][Full Text] [Related]
19. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
20. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Rouahi M; Champion E; Gallet O; Jada A; Anselme K Colloids Surf B Biointerfaces; 2006 Jan; 47(1):10-9. PubMed ID: 16387480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]