These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15293407)

  • 41. Imaging the Substructures of Individual IgE Antibodies with Atomic Force Microscopy.
    Hu J; Gao M; Wang Y; Liu M; Wang J; Li J; Song Z; Chen Y; Wang Z
    Langmuir; 2019 Nov; 35(46):14896-14901. PubMed ID: 31661619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Writing and low-temperature characterization of oxide nanostructures.
    Levy A; Bi F; Huang M; Lu S; Tomczyk M; Cheng G; Irvin P; Levy J
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25080268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visualization of DNA and protein-DNA complexes with atomic force microscopy.
    Lyubchenko YL; Gall AA; Shlyakhtenko LS
    Methods Mol Biol; 2014; 1117():367-84. PubMed ID: 24357372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time atomic force microscopy using mechanical resonator type scanner.
    Seo Y; Choi CS; Han SH; Han SJ
    Rev Sci Instrum; 2008 Oct; 79(10):103703. PubMed ID: 19044715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A relocated technique of atomic force microscopy (AFM) samples and its application in molecular biology.
    Wu A; Li Z; Yu L; Wang H; Wang E
    Ultramicroscopy; 2002 Aug; 92(3-4):201-7. PubMed ID: 12213021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyaluronic acid by atomic force microscopy.
    Jacoboni I; Valdrè U; Mori G; Quaglino D; Pasquali-Ronchetti I
    J Struct Biol; 1999 Jun; 126(1):52-8. PubMed ID: 10329488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct probing of nanodimensioned oxide multilayers with the aid of focused ion beam milling.
    Kuru Y; Jalili H; Cai Z; Yildiz B; Tuller HL
    Adv Mater; 2011 Oct; 23(39):4543-8. PubMed ID: 21901766
    [No Abstract]   [Full Text] [Related]  

  • 48. Atomic force microscopy of DNA at high humidity: irreversible conformational switching of supercoiled molecules.
    Billingsley DJ; Kirkham J; Bonass WA; Thomson NH
    Phys Chem Chem Phys; 2010 Nov; 12(44):14727-34. PubMed ID: 20927466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Visualization of the cruciform structure of superhelical DNA by use of atomic force microscopy].
    Limanskiĭ AP
    Biofizika; 2000; 45(6):1039-43. PubMed ID: 11155230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic force microscope investigation of large-circle DNA molecules.
    Wu A; Yu L; Li Z; Yang H; Wang E
    Anal Biochem; 2004 Feb; 325(2):293-300. PubMed ID: 14751264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microscopy: When mica and water meet.
    Frenken JW; Oosterkamp TH
    Nature; 2010 Mar; 464(7285):38-9. PubMed ID: 20203595
    [No Abstract]   [Full Text] [Related]  

  • 52. Surface-directed and ethanol-induced DNA condensation on mica.
    Zhang C; van der Maarel JR
    J Phys Chem B; 2008 Mar; 112(11):3552-7. PubMed ID: 18293959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facilitating the pickup of individual DNA molecules by AFM nanomanipulation with tips mechanically worn on bare mica.
    Duan N; Long F; Wang X; Li B; Hu J; Zhang Y
    Microsc Res Tech; 2012 May; 75(5):638-42. PubMed ID: 22065380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces.
    Lauritsen JV; Reichling M
    J Phys Condens Matter; 2010 Jul; 22(26):263001. PubMed ID: 21386455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of single DNA molecule hybridization on a surface by atomic force microscopy.
    Pastré D; Joshi V; Curmi PA; Hamon L
    Small; 2013 Nov; 9(21):3630-8. PubMed ID: 23674511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slip length measurement of confined air flow on three smooth surfaces.
    Pan Y; Bhushan B; Maali A
    Langmuir; 2013 Apr; 29(13):4298-302. PubMed ID: 23464759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly(dG)-poly(dC) DNA appears shorter than poly(dA)-poly(dT) and possibly adopts an A-related conformation on a mica surface under ambient conditions.
    Borovok N; Molotsky T; Ghabboun J; Cohen H; Porath D; Kotlyar A
    FEBS Lett; 2007 Dec; 581(30):5843-6. PubMed ID: 18053809
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomic force microscopy reveals the assembly of potential DNA "nanocarriers" by poly-L-ornithine.
    Mann A; Khan MA; Shukla V; Ganguli M
    Biophys Chem; 2007 Sep; 129(2-3):126-36. PubMed ID: 17601648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths.
    Pastré D; Hamon L; Landousy F; Sorel I; David MO; Zozime A; Le Cam E; Piétrement O
    Langmuir; 2006 Jul; 22(15):6651-60. PubMed ID: 16831009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reaction-diffusion wave model for self-assembled network formation of poly(dA)·poly(dT) DNA on mica and HOPG surfaces.
    Doi K; Toyokita Y; Akamatsu S; Kawano S
    Comput Methods Biomech Biomed Engin; 2014; 17(6):661-77. PubMed ID: 23013145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.