BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15293548)

  • 1. CISOC-PSCT: a predictive system for carcinogenic toxicity.
    Liao Q; Yao JH; Li F; Yuan SG; Doucet JP; Panaye A; Fan BT
    SAR QSAR Environ Res; 2004 Jun; 15(3):217-35. PubMed ID: 15293548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of structure-carcinogenicity relationship for 86 compounds from NTP data base using topological indices as descriptors.
    Vracko M
    SAR QSAR Environ Res; 2000; 11(2):103-15. PubMed ID: 10877472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Efficiency of evaluating the carcinogenicity of chemical substances in short-term tests and the SAR model].
    Tarasov VA; Tsarenko NA; Mel'nik VA; Mustafaev ON; Makedonov GP; Tarasov AV
    Genetika; 2009 Dec; 45(12):1674-84. PubMed ID: 20198980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A topological substructural approach applied to the computational prediction of rodent carcinogenicity.
    Helguera AM; Cabrera Pérez MA; González MP; Ruiz RM; González Díaz H
    Bioorg Med Chem; 2005 Apr; 13(7):2477-88. PubMed ID: 15755650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models.
    Arena VC; Sussman NB; Mazumdar S; Yu S; Macina OT
    SAR QSAR Environ Res; 2004 Feb; 15(1):1-18. PubMed ID: 15113065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search of a topological pattern to evaluate toxicity of heterogeneous compounds.
    García-Domenech R; de Julián-Ortiz JV; Duart MJ; García-Torrecillas JM; Antón-Fos GM; Ríos-Santamarina I; De Gregorio-Alapont C; Gálvez J
    SAR QSAR Environ Res; 2001; 12(1-2):237-54. PubMed ID: 11697058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity models of chemical carcinogens: state of the art, and new directions.
    Benigni R; Bossa C
    Ann Ist Super Sanita; 2006; 42(2):118-26. PubMed ID: 17033131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationship analysis tools: validation and applicability in predicting carcinogens.
    Mayer J; Cheeseman MA; Twaroski ML
    Regul Toxicol Pharmacol; 2008 Feb; 50(1):50-8. PubMed ID: 18023949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure.
    Serra JR; Thompson ED; Jurs PC
    Chem Res Toxicol; 2003 Feb; 16(2):153-63. PubMed ID: 12588186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided rodent carcinogenicity prediction.
    Lagunin AA; Dearden JC; Filimonov DA; Poroikov VV
    Mutat Res; 2005 Oct; 586(2):138-46. PubMed ID: 16112600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building an organ-specific carcinogenic database for SAR analyses.
    Young J; Tong W; Fang H; Xie Q; Pearce B; Hashemi R; Beger R; Cheeseman M; Chen J; Chang YC; Kodell R
    J Toxicol Environ Health A; 2004 Sep; 67(17):1363-89. PubMed ID: 15371237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting carcinogenicity and understanding the carcinogenic mechanism of N-nitroso compounds using a TOPS-MODE approach.
    Yuan J; Pu Y; Yin L
    Chem Res Toxicol; 2011 Dec; 24(12):2269-79. PubMed ID: 22084901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of substances of weak toxicity from chemical structures. An epidemiological approach.
    Yano K; Yano K
    SAR QSAR Environ Res; 2003; 14(5-6):405-12. PubMed ID: 14758983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds.
    Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A
    J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds: species: rat; sex: male; route of administration: water.
    Helguera AM; Cordeiro MN; Pérez MA; Combes RD; González MP
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):197-207. PubMed ID: 18533217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A QSAR for baseline toxicity: validation, domain of application, and prediction.
    Oberg T
    Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.
    Mattioni BE; Kauffman GW; Jurs PC; Custer LL; Durham SK; Pearl GM
    J Chem Inf Comput Sci; 2003; 43(3):949-63. PubMed ID: 12767154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.
    Votano JR; Parham M; Hall LH; Kier LB; Hall LM
    Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.