These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Efficient statistical inference procedures for partially nonlinear models and their applications. Li R; Nie L Biometrics; 2008 Sep; 64(3):904-911. PubMed ID: 18047529 [TBL] [Abstract][Full Text] [Related]
43. Joint models for a primary endpoint and multiple longitudinal covariate processes. Li E; Wang N; Wang NY Biometrics; 2007 Dec; 63(4):1068-78. PubMed ID: 17501940 [TBL] [Abstract][Full Text] [Related]
44. Semiparametric analysis of panel count data with correlated observation and follow-up times. He X; Tong X; Sun J Lifetime Data Anal; 2009 Jun; 15(2):177-96. PubMed ID: 19082711 [TBL] [Abstract][Full Text] [Related]
45. The partly Aalen's model for recurrent event data with a dependent terminal event. Chen CM; Shen PS; Chuang YW Stat Med; 2016 Jan; 35(2):268-81. PubMed ID: 26265213 [TBL] [Abstract][Full Text] [Related]
46. Joint model of recurrent events and a terminal event with time-varying coefficients. Yu Z; Liu L; Bravata DM; Williams LS Biom J; 2014 Mar; 56(2):183-97. PubMed ID: 24285466 [TBL] [Abstract][Full Text] [Related]
47. Nonparametric comparison for panel count data with unequal observation processes. Zhao X; Sun J Biometrics; 2011 Sep; 67(3):770-9. PubMed ID: 21114659 [TBL] [Abstract][Full Text] [Related]
48. Improving efficiency using the Rao-Blackwell theorem in corrected and conditional score estimation methods for joint models. Huang YH; Hwang WH; Chen FY Biometrics; 2016 Dec; 72(4):1136-1144. PubMed ID: 26953722 [TBL] [Abstract][Full Text] [Related]
49. Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design. Xu C; Chinchilli VM; Wang M Stat Med; 2018 Aug; 37(18):2771-2786. PubMed ID: 29682772 [TBL] [Abstract][Full Text] [Related]
50. Clustered mixed nonhomogeneous Poisson process spline models for the analysis of recurrent event panel data. Nielsen JD; Dean CB Biometrics; 2008 Sep; 64(3):751-761. PubMed ID: 18047528 [TBL] [Abstract][Full Text] [Related]
51. Estimating regression parameters and degree of dependence for multivariate failure time data. Mahé C; Chevret S Biometrics; 1999 Dec; 55(4):1078-84. PubMed ID: 11315051 [TBL] [Abstract][Full Text] [Related]
52. Semiparametric analysis of correlated recurrent and terminal events. Ye Y; Kalbfleisch JD; Schaubel DE Biometrics; 2007 Mar; 63(1):78-87. PubMed ID: 17447932 [TBL] [Abstract][Full Text] [Related]
54. Bayesian semiparametric frailty selection in multivariate event time data. Cai B Biom J; 2010 Apr; 52(2):171-85. PubMed ID: 20358551 [TBL] [Abstract][Full Text] [Related]
55. A semi-parametric accelerated failure time cure model. Li CS; Taylor JM Stat Med; 2002 Nov; 21(21):3235-47. PubMed ID: 12375301 [TBL] [Abstract][Full Text] [Related]
56. Modeling longitudinal data with ordinal response by varying coefficients. Kauermann G Biometrics; 2000 Sep; 56(3):692-8. PubMed ID: 10985204 [TBL] [Abstract][Full Text] [Related]
57. Dynamic analysis of recurrent event data using the additive hazard model. Fosen J; Borgan O; Weedon-Fekjaer H; Aalen OO Biom J; 2006 Jun; 48(3):381-98. PubMed ID: 16845903 [TBL] [Abstract][Full Text] [Related]
59. A mixed effects model for multivariate ordinal response data including correlated discrete failure times with ordinal responses. Ten Have TR Biometrics; 1996 Jun; 52(2):473-91. PubMed ID: 8672699 [TBL] [Abstract][Full Text] [Related]
60. Nonparametric analysis of recurrent events and death. Ghosh D; Lin DY Biometrics; 2000 Jun; 56(2):554-62. PubMed ID: 10877316 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]