BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15294031)

  • 1. Regulation of glucose transport by the AMP-activated protein kinase.
    Fujii N; Aschenbach WG; Musi N; Hirshman MF; Goodyear LJ
    Proc Nutr Soc; 2004 May; 63(2):205-10. PubMed ID: 15294031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caffeine acutely activates 5'adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles.
    Egawa T; Hamada T; Kameda N; Karaike K; Ma X; Masuda S; Iwanaka N; Hayashi T
    Metabolism; 2009 Nov; 58(11):1609-17. PubMed ID: 19608206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?
    Jensen TE; Wojtaszewski JF; Richter EA
    Acta Physiol (Oxf); 2009 May; 196(1):155-74. PubMed ID: 19243572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMP-activated protein kinase: a key system mediating metabolic responses to exercise.
    Hardie DG
    Med Sci Sports Exerc; 2004 Jan; 36(1):28-34. PubMed ID: 14707764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-activated protein kinase regulation and action in skeletal muscle during exercise.
    Musi N; Yu H; Goodyear LJ
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):191-5. PubMed ID: 12546683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle.
    Wojtaszewski JF; MacDonald C; Nielsen JN; Hellsten Y; Hardie DG; Kemp BE; Kiens B; Richter EA
    Am J Physiol Endocrinol Metab; 2003 Apr; 284(4):E813-22. PubMed ID: 12488245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity.
    O'Neill HM; Holloway GP; Steinberg GR
    Mol Cell Endocrinol; 2013 Feb; 366(2):135-51. PubMed ID: 22750049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen.
    McConell GK; Lee-Young RS; Chen ZP; Stepto NK; Huynh NN; Stephens TJ; Canny BJ; Kemp BE
    J Physiol; 2005 Oct; 568(Pt 2):665-76. PubMed ID: 16051629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-activated protein kinase and the regulation of glucose transport.
    Fujii N; Jessen N; Goodyear LJ
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E867-77. PubMed ID: 16822958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells.
    Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB
    J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle.
    Lee WJ; Song KH; Koh EH; Won JC; Kim HS; Park HS; Kim MS; Kim SW; Lee KU; Park JY
    Biochem Biophys Res Commun; 2005 Jul; 332(3):885-91. PubMed ID: 15913551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle.
    Tanaka S; Hayashi T; Toyoda T; Hamada T; Shimizu Y; Hirata M; Ebihara K; Masuzaki H; Hosoda K; Fushiki T; Nakao K
    Metabolism; 2007 Dec; 56(12):1719-28. PubMed ID: 17998027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase: Role in metabolism and therapeutic implications.
    Schimmack G; Defronzo RA; Musi N
    Diabetes Obes Metab; 2006 Nov; 8(6):591-602. PubMed ID: 17026483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise.
    Miura S; Kai Y; Kamei Y; Bruce CR; Kubota N; Febbraio MA; Kadowaki T; Ezaki O
    Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E47-55. PubMed ID: 18940938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity.
    Friedrichsen M; Mortensen B; Pehmøller C; Birk JB; Wojtaszewski JF
    Mol Cell Endocrinol; 2013 Feb; 366(2):204-14. PubMed ID: 22796442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle glycogen and metabolic regulation.
    Hargreaves M
    Proc Nutr Soc; 2004 May; 63(2):217-20. PubMed ID: 15294033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase.
    Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T
    Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
    Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of 5'AMP-activated protein kinase in skeletal muscle.
    Treebak JT; Wojtaszewski JF
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S13-7. PubMed ID: 18719592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.