BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15294052)

  • 1. Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation.
    Machida S; Booth FW
    Proc Nutr Soc; 2004 May; 63(2):337-40. PubMed ID: 15294052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-like growth factor-I E peptides: implications for aging skeletal muscle.
    Velloso CP; Harridge SD
    Scand J Med Sci Sports; 2010 Feb; 20(1):20-7. PubMed ID: 19883387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin-like growth factor-1 (IGF-1) and leucine activate pig myogenic satellite cells through mammalian target of rapamycin (mTOR) pathway.
    Han B; Tong J; Zhu MJ; Ma C; Du M
    Mol Reprod Dev; 2008 May; 75(5):810-7. PubMed ID: 18033679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IGF-1 induces human myotube hypertrophy by increasing cell recruitment.
    Jacquemin V; Furling D; Bigot A; Butler-Browne GS; Mouly V
    Exp Cell Res; 2004 Sep; 299(1):148-58. PubMed ID: 15302582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.
    Hodik V; Mett A; Halevy O
    Gen Comp Endocrinol; 1997 Oct; 108(1):161-70. PubMed ID: 9378270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment.
    Kamanga-Sollo E; Pampusch MS; Xi G; White ME; Hathaway MR; Dayton WR
    J Cell Physiol; 2004 Nov; 201(2):181-9. PubMed ID: 15334653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women.
    Petrella JK; Kim JS; Cross JM; Kosek DJ; Bamman MM
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E937-46. PubMed ID: 16772322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response to growth factors of cultured satellite cells derived from turkeys having different growth rates.
    McFarland DC; Pesall JE; Gilkerson KK; Ferrin NH
    Cytobios; 1995; 82(331):229-38. PubMed ID: 8565621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process.
    Adamo ML; Farrar RP
    Ageing Res Rev; 2006 Aug; 5(3):310-31. PubMed ID: 16949353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
    Philippou A; Halapas A; Maridaki M; Koutsilieris M
    J Musculoskelet Neuronal Interact; 2007; 7(3):208-18. PubMed ID: 17947802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy.
    Mouly V; Aamiri A; Bigot A; Cooper RN; Di Donna S; Furling D; Gidaro T; Jacquemin V; Mamchaoui K; Negroni E; Périé S; Renault V; Silva-Barbosa SD; Butler-Browne GS
    Acta Physiol Scand; 2005 May; 184(1):3-15. PubMed ID: 15847639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of hepatocyte growth factor and insulin-like growth factor-1 on the myogenic differentiation of satellite cells in human urethral rhabdosphincter.
    Sumino Y; Hanada M; Hirata Y; Sato F; Mimata H
    Neurourol Urodyn; 2010 Mar; 29(3):470-5. PubMed ID: 19618377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anabolic potential and regulation of the skeletal muscle satellite cell populations.
    Scimè A; Rudnicki MA
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):214-9. PubMed ID: 16607119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of cellular mechanisms to growth and development of food producing animals.
    Chung KY; Johnson BJ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E226-35. PubMed ID: 17965330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IGF-I- and EGF-dependent DNA synthesis of porcine myoblasts is influenced by the dietary isoflavones genistein and daidzein.
    Mau M; Kalbe C; Wollenhaupt K; Nürnberg G; Rehfeldt C
    Domest Anim Endocrinol; 2008 Oct; 35(3):281-9. PubMed ID: 18635334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander.
    Anderson JE
    J Exp Biol; 2006 Jun; 209(Pt 12):2276-92. PubMed ID: 16731804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration.
    Villena J; Brandan E
    J Cell Physiol; 2004 Feb; 198(2):169-78. PubMed ID: 14603519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular regulation of muscle growth and development in meat animals.
    Dayton WR; White ME
    J Anim Sci; 2008 Apr; 86(14 Suppl):E217-25. PubMed ID: 17709769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species.
    Meng D; Shi X; Jiang BH; Fang J
    Free Radic Biol Med; 2007 Jun; 42(11):1651-60. PubMed ID: 17462533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dividing to keep muscle together: the role of satellite cells in aging skeletal muscle.
    Hepple RT
    Sci Aging Knowledge Environ; 2006 Jan; 2006(3):pe3. PubMed ID: 16421381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.