BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15294420)

  • 1. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts.
    Stéphanou A; Chaplain MA; Tracqui P
    Bull Math Biol; 2004 Sep; 66(5):1119-54. PubMed ID: 15294420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin filament branching and protrusion velocity in a simple 1D model of a motile cell.
    Dawes AT; Bard Ermentrout G; Cytrynbaum EN; Edelstein-Keshet L
    J Theor Biol; 2006 Sep; 242(2):265-79. PubMed ID: 16600307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions.
    Stéphanou A; Mylona E; Chaplain M; Tracqui P
    J Theor Biol; 2008 Aug; 253(4):701-16. PubMed ID: 18550085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and mechanosensory function of focal adhesions: experiments and models.
    Bershadsky AD; Ballestrem C; Carramusa L; Zilberman Y; Gilquin B; Khochbin S; Alexandrova AY; Verkhovsky AB; Shemesh T; Kozlov MM
    Eur J Cell Biol; 2006 Apr; 85(3-4):165-73. PubMed ID: 16360240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Eulerian/XFEM formulation for the large deformation of cortical cell membrane.
    Vernerey FJ; Farsad M
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):433-45. PubMed ID: 21516528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and failure properties of single attached cells under compression.
    Peeters EA; Oomens CW; Bouten CV; Bader DL; Baaijens FP
    J Biomech; 2005 Aug; 38(8):1685-93. PubMed ID: 15958226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of actin monomers into long filaments: Brownian dynamics simulations.
    Guo K; Shillcock J; Lipowsky R
    J Chem Phys; 2009 Jul; 131(1):015102. PubMed ID: 19586123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traction dynamics of filopodia on compliant substrates.
    Chan CE; Odde DJ
    Science; 2008 Dec; 322(5908):1687-91. PubMed ID: 19074349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell membrane deformations under magnetic force modulation characterized by optical tracking and non-interferometric widefield profilometry.
    Wang CC; Jian HJ; Wu CW; Lee CH
    Microsc Res Tech; 2008 Aug; 71(8):594-8. PubMed ID: 18452190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic aspects of microfilament-membrane attachments.
    Jockusch BM; Wiegand C; Temm-Grove CJ; Nikolai G
    Symp Soc Exp Biol; 1993; 47():253-66. PubMed ID: 8165569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytomechanics of cell deformations and migration: from models to experiments.
    Stéphanou A; Tracqui P
    C R Biol; 2002 Apr; 325(4):295-308. PubMed ID: 12161909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active mechanical stabilization of the viscoplastic intracellular space of Dictyostelia cells by microtubule-actin crosstalk.
    Heinrich D; Sackmann E
    Acta Biomater; 2006 Nov; 2(6):619-31. PubMed ID: 16942924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing.
    Farhadifar R; Röper JC; Aigouy B; Eaton S; Jülicher F
    Curr Biol; 2007 Dec; 17(24):2095-104. PubMed ID: 18082406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic coupling between actin network flow and turnover revealed by flow mapping in the lamella of crawling fragments.
    Okeyo KO; Adachi T; Hojo M
    Biochem Biophys Res Commun; 2009 Dec; 390(3):797-802. PubMed ID: 19836353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping correlated membrane pulsations and fluctuations in human cells.
    Pelling AE; Veraitch FS; Pui-Kei Chu C; Nicholls BM; Hemsley AL; Mason C; Horton MA
    J Mol Recognit; 2007; 20(6):467-75. PubMed ID: 17712774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly.
    Kasas S; Wang X; Hirling H; Marsault R; Huni B; Yersin A; Regazzi R; Grenningloh G; Riederer B; Forrò L; Dietler G; Catsicas S
    Cell Motil Cytoskeleton; 2005 Oct; 62(2):124-32. PubMed ID: 16145686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biomechanics of actomyosin-dependent mobility of keratinocytes].
    Alt W
    Biofizika; 1996; 41(1):169-77. PubMed ID: 8714468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.