These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15294427)
1. A calcium-based phantom bursting model for pancreatic islets. Bertram R; Sherman A Bull Math Biol; 2004 Sep; 66(5):1313-44. PubMed ID: 15294427 [TBL] [Abstract][Full Text] [Related]
2. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells: considerations in favor of metabolically driven oscillations. Pedersen MG J Theor Biol; 2007 Sep; 248(2):391-400. PubMed ID: 17604056 [TBL] [Abstract][Full Text] [Related]
3. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354 [TBL] [Abstract][Full Text] [Related]
4. A phantom bursting mechanism for episodic bursting. Bertram R; Rhoads J; Cimbora WP Bull Math Biol; 2008 Oct; 70(7):1979-93. PubMed ID: 18648884 [TBL] [Abstract][Full Text] [Related]
5. Complex bursting in pancreatic islets: a potential glycolytic mechanism. Wierschem K; Bertram R J Theor Biol; 2004 Jun; 228(4):513-21. PubMed ID: 15178199 [TBL] [Abstract][Full Text] [Related]
6. The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Zhang M; Goforth P; Bertram R; Sherman A; Satin L Biophys J; 2003 May; 84(5):2852-70. PubMed ID: 12719219 [TBL] [Abstract][Full Text] [Related]
7. The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Atwater I; Dawson CM; Scott A; Eddlestone G; Rojas E Horm Metab Res Suppl; 1980; Suppl 10():100-7. PubMed ID: 7005051 [TBL] [Abstract][Full Text] [Related]
8. Glucose metabolism and oscillatory behavior of pancreatic islets. Kang H; Jo J; Kim HJ; Choi MY; Rhee SW; Koh DS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051905. PubMed ID: 16383643 [TBL] [Abstract][Full Text] [Related]
9. Phantom bursting may underlie electrical bursting in single pancreatic β-cells. Fazli M; Vo T; Bertram R J Theor Biol; 2020 Sep; 501():110346. PubMed ID: 32505826 [TBL] [Abstract][Full Text] [Related]
10. Glucose-dependent and -independent electrical activity in islets of Langerhans of Psammomys obesus, an animal model of nutritionally induced obesity and diabetes. Zimliki CL; Chenault VM; Mears D Gen Comp Endocrinol; 2009 Apr; 161(2):193-201. PubMed ID: 19167400 [TBL] [Abstract][Full Text] [Related]
11. From spikers to bursters via coupling: help from heterogeneity. de Vries G; Sherman A Bull Math Biol; 2001 Mar; 63(2):371-91. PubMed ID: 11276531 [TBL] [Abstract][Full Text] [Related]
12. Three roads to islet bursting: emergent oscillations in coupled phantom bursters. Zimliki CL; Mears D; Sherman A Biophys J; 2004 Jul; 87(1):193-206. PubMed ID: 15240457 [TBL] [Abstract][Full Text] [Related]
13. Detection of slow-fast limit cycles in a model for electrical activity in the pancreatic beta-cell. Lenbury Y; Kumnungkit K; Novaprateep B IMA J Math Appl Med Biol; 1996 Mar; 13(1):1-21. PubMed ID: 8671578 [TBL] [Abstract][Full Text] [Related]
14. Synchronization and entrainment of cytoplasmic Ca2+ oscillations in cell clusters prepared from single or multiple mouse pancreatic islets. Zarkovic M; Henquin JC Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E340-7. PubMed ID: 15126238 [TBL] [Abstract][Full Text] [Related]
15. Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans. Aslanidi OV; Mornev OA; Skyggebjerg O; Arkhammar P; Thastrup O; Sørensen MP; Christiansen PL; Conradsen K; Scott AC Biophys J; 2001 Mar; 80(3):1195-209. PubMed ID: 11222284 [TBL] [Abstract][Full Text] [Related]
16. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Bertram R; Satin L; Zhang M; Smolen P; Sherman A Biophys J; 2004 Nov; 87(5):3074-87. PubMed ID: 15347584 [TBL] [Abstract][Full Text] [Related]
17. Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Nunemaker CS; Bertram R; Sherman A; Tsaneva-Atanasova K; Daniel CR; Satin LS Biophys J; 2006 Sep; 91(6):2082-96. PubMed ID: 16815907 [TBL] [Abstract][Full Text] [Related]
18. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells. Marinelli I; Vo T; Gerardo-Giorda L; Bertram R J Theor Biol; 2018 Oct; 454():310-319. PubMed ID: 29935201 [TBL] [Abstract][Full Text] [Related]
19. Electrical bursting and intracellular Ca2+ oscillations in excitable cell models. Chay TR Biol Cybern; 1990; 63(1):15-23. PubMed ID: 2162700 [TBL] [Abstract][Full Text] [Related]
20. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Tsaneva-Atanasova K; Zimliki CL; Bertram R; Sherman A Biophys J; 2006 May; 90(10):3434-46. PubMed ID: 16500973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]