BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15294798)

  • 1. Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa.
    Vila M; Simó R; Kiene RP; Pinhassi J; González JM; Moran MA; Pedrós-Alió C
    Appl Environ Microbiol; 2004 Aug; 70(8):4648-57. PubMed ID: 15294798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean.
    Vila-Costa M; Pinhassi J; Alonso C; Pernthaler J; Simó R
    Environ Microbiol; 2007 Oct; 9(10):2451-63. PubMed ID: 17803771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom.
    Pinhassi J; Simó R; González JM; Vila M; Alonso-Sáez L; Kiene RP; Moran MA; Pedrós-Alió C
    Appl Environ Microbiol; 2005 Dec; 71(12):7650-60. PubMed ID: 16332737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton.
    Kiene RP; Linn LJ; González J; Moran MA; Bruton JA
    Appl Environ Microbiol; 1999 Oct; 65(10):4549-58. PubMed ID: 10508088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters.
    Alonso C; Pernthaler J
    Appl Environ Microbiol; 2005 Apr; 71(4):1709-16. PubMed ID: 15811993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay.
    Zeng YX; Qiao ZY
    Curr Microbiol; 2019 Sep; 76(9):967-974. PubMed ID: 31134298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial taxa that limit sulfur flux from the ocean.
    Howard EC; Henriksen JR; Buchan A; Reisch CR; Bürgmann H; Welsh R; Ye W; González JM; Mace K; Joye SB; Kiene RP; Whitman WB; Moran MA
    Science; 2006 Oct; 314(5799):649-52. PubMed ID: 17068264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine bacteria from the Roseobacter clade produce sulfur volatiles via amino acid and dimethylsulfoniopropionate catabolism.
    Brock NL; Menke M; Klapschinski TA; Dickschat JS
    Org Biomol Chem; 2014 Jul; 12(25):4318-23. PubMed ID: 24848489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of sulfur-related transcription by Roseobacter communities using a taxon-specific functional gene microarray.
    Rinta-Kanto JM; Bürgmann H; Gifford SM; Sun S; Sharma S; del Valle DA; Kiene RP; Moran MA
    Environ Microbiol; 2011 Feb; 13(2):453-67. PubMed ID: 20880331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters.
    Howard EC; Sun S; Biers EJ; Moran MA
    Environ Microbiol; 2008 Sep; 10(9):2397-410. PubMed ID: 18510552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-cytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopropionate transformations.
    Mou X; Moran MA; Stepanauskas R; González JM; Hodson RE
    Appl Environ Microbiol; 2005 Mar; 71(3):1405-16. PubMed ID: 15746343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sunlight effects on the Osmotrophic uptake of DMSP-sulfur and leucine by polar phytoplankton.
    Ruiz-González C; Galí M; Sintes E; Herndl GJ; Gasol JM; Simó R
    PLoS One; 2012; 7(9):e45545. PubMed ID: 23029084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimethylsulfoniopropionate uptake by marine phytoplankton.
    Vila-Costa M; Simó R; Harada H; Gasol JM; Slezak D; Kiene RP
    Science; 2006 Oct; 314(5799):652-4. PubMed ID: 17068265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.
    Cui Y; Suzuki S; Omori Y; Wong SK; Ijichi M; Kaneko R; Kameyama S; Tanimoto H; Hamasaki K
    Appl Environ Microbiol; 2015 Jun; 81(12):4184-94. PubMed ID: 25862229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration-dependent patterns of leucine incorporation by coastal picoplankton.
    Alonso C; Pernthaler J
    Appl Environ Microbiol; 2006 Mar; 72(3):2141-7. PubMed ID: 16517664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean.
    Malmstrom RR; Kiene RP; Cottrell MT; Kirchman DL
    Appl Environ Microbiol; 2004 Jul; 70(7):4129-35. PubMed ID: 15240292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea.
    Zubkov MV; Fuchs BM; Burkill PH; Amann R
    Appl Environ Microbiol; 2001 Nov; 67(11):5210-8. PubMed ID: 11679347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes.
    Nowinski B; Motard-Côté J; Landa M; Preston CM; Scholin CA; Birch JM; Kiene RP; Moran MA
    Environ Microbiol; 2019 May; 21(5):1687-1701. PubMed ID: 30761723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom.
    Howard EC; Sun S; Reisch CR; del Valle DA; Bürgmann H; Kiene RP; Moran MA
    Appl Environ Microbiol; 2011 Jan; 77(2):524-31. PubMed ID: 21097583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography.
    Sintes E; Herndl GJ
    Appl Environ Microbiol; 2006 Nov; 72(11):7022-8. PubMed ID: 16950912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.