These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 15294814)
1. Uptake of the beta-lactam precursor alpha-aminoadipic acid in Penicillium chrysogenum is mediated by the acidic and the general amino acid permease. Trip H; Evers ME; Kiel JA; Driessen AJ Appl Environ Microbiol; 2004 Aug; 70(8):4775-83. PubMed ID: 15294814 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a. Omura F; Hatanaka H; Nakao Y FEMS Yeast Res; 2007 Dec; 7(8):1350-61. PubMed ID: 17825063 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fierro F; García-Estrada C; Castillo NI; Rodríguez R; Velasco-Conde T; Martín JF Fungal Genet Biol; 2006 Sep; 43(9):618-29. PubMed ID: 16713314 [TBL] [Abstract][Full Text] [Related]
4. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae. Regenberg B; Kielland-Brandt MC Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604 [TBL] [Abstract][Full Text] [Related]
5. PcMtr, an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum. Trip H; Evers ME; Driessen AJ Biochim Biophys Acta; 2004 Dec; 1667(2):167-73. PubMed ID: 15581852 [TBL] [Abstract][Full Text] [Related]
6. Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Trip H; Evers ME; Konings WN; Driessen AJ Biochim Biophys Acta; 2002 Sep; 1565(1):73-80. PubMed ID: 12225854 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid. Naranjo L; Martín de Valmaseda E; Casqueiro J; Ullán RV; Lamas-Maceiras M; Bañuelos O; Martín JF Appl Environ Microbiol; 2004 Feb; 70(2):1031-9. PubMed ID: 14766586 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. van den Berg MA; Westerlaken I; Leeflang C; Kerkman R; Bovenberg RA Fungal Genet Biol; 2007 Sep; 44(9):830-44. PubMed ID: 17548217 [TBL] [Abstract][Full Text] [Related]
10. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Kiel JA; van der Klei IJ; van den Berg MA; Bovenberg RA; Veenhuis M Fungal Genet Biol; 2005 Feb; 42(2):154-64. PubMed ID: 15670713 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the oat1 gene of Penicillium chrysogenum encoding an omega-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Naranjo L; Lamas-Maceiras M; Ullán RV; Campoy S; Teijeira F; Casqueiro J; Martín JF Mol Genet Genomics; 2005 Oct; 274(3):283-94. PubMed ID: 16163487 [TBL] [Abstract][Full Text] [Related]
12. The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. García-Rico RO; Martín JF; Fierro F Res Microbiol; 2007 Jun; 158(5):437-46. PubMed ID: 17467244 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the β-lactam producer Penicillium chrysogenum. Gombert AK; Veiga T; Puig-Martinez M; Lamboo F; Nijland JG; Driessen AJ; Pronk JT; Daran JM Fungal Genet Biol; 2011 Aug; 48(8):831-9. PubMed ID: 21549851 [TBL] [Abstract][Full Text] [Related]
14. Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis. Esmahan C; Alvarez E; Montenegro E; Martin JF Appl Environ Microbiol; 1994 Jun; 60(6):1705-10. PubMed ID: 8031073 [TBL] [Abstract][Full Text] [Related]
15. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Valmaseda EM; Campoy S; Naranjo L; Casqueiro J; Martín JF Mol Genet Genomics; 2005 Oct; 274(3):272-82. PubMed ID: 16049680 [TBL] [Abstract][Full Text] [Related]
16. The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1). Schreve J; Garrett JM Yeast; 1997 Apr; 13(5):435-9. PubMed ID: 9153753 [TBL] [Abstract][Full Text] [Related]
18. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Andréasson C; Neve EP; Ljungdahl PO Yeast; 2004 Feb; 21(3):193-9. PubMed ID: 14968425 [TBL] [Abstract][Full Text] [Related]
19. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Nijland JG; Kovalchuk A; van den Berg MA; Bovenberg RA; Driessen AJ Fungal Genet Biol; 2008 Oct; 45(10):1415-21. PubMed ID: 18691664 [TBL] [Abstract][Full Text] [Related]
20. Nitrate regulation of alpha-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum. Hijarrubia MJ; Aparicio JF; Martín JF Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):270-7. PubMed ID: 12111157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]