These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15294814)

  • 21. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha.
    Kiel JA; van den Berg M; Bovenberg RA; van der Klei IJ; Veenhuis M
    Fungal Genet Biol; 2004 Jul; 41(7):708-20. PubMed ID: 15275666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae deficient in both high- and low-affinity L-leucine transport.
    Chianelli MS; Stella CA; Sáenz DA; Ramos EH; Kotliar N; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1996 Sep; 42(6):847-57. PubMed ID: 8891352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional identification of high-affinity iron permeases from Fusarium graminearum.
    Park YS; Choi ID; Kang CM; Ham MS; Kim JH; Kim TH; Yun SH; Lee YW; Chang HI; Sung HC; Yun CW
    Fungal Genet Biol; 2006 Apr; 43(4):273-82. PubMed ID: 16464625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain DeltaPcku70 shows up-regulation of genes from the HOG pathway.
    Hoff B; Kamerewerd J; Sigl C; Zadra I; Kück U
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1081-94. PubMed ID: 19690852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum.
    van den Berg MA; Albang R; Albermann K; Badger JH; Daran JM; Driessen AJ; Garcia-Estrada C; Fedorova ND; Harris DM; Heijne WH; Joardar V; Kiel JA; Kovalchuk A; Martín JF; Nierman WC; Nijland JG; Pronk JT; Roubos JA; van der Klei IJ; van Peij NN; Veenhuis M; von Döhren H; Wagner C; Wortman J; Bovenberg RA
    Nat Biotechnol; 2008 Oct; 26(10):1161-8. PubMed ID: 18820685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases.
    Isnard AD; Thomas D; Surdin-Kerjan Y
    J Mol Biol; 1996 Oct; 262(4):473-84. PubMed ID: 8893857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.
    Beltran G; Novo M; Rozès N; Mas A; Guillamón JM
    FEMS Yeast Res; 2004 Mar; 4(6):625-32. PubMed ID: 15040951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation.
    Cheng JS; Zhao Y; Qiao B; Lu H; Chen Y; Yuan YJ
    Appl Biochem Biotechnol; 2016 Jul; 179(5):788-804. PubMed ID: 26961188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes.
    Ullán RV; Campoy S; Casqueiro J; Fernández FJ; Martín JF
    Chem Biol; 2007 Mar; 14(3):329-39. PubMed ID: 17379148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the lys2 gene of Penicillium chrysogenum encoding alpha-aminoadipic acid reductase.
    Casqueiro J; Gutiérrez S; Bañuelos O; Fierro F; Velasco J; Martín JF
    Mol Gen Genet; 1998 Sep; 259(5):549-56. PubMed ID: 9790587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of three Penicillium chrysogenum α-l-arabinofuranosidases (PcABF43B, PcABF51C, and AFQ1) with different specificities toward arabino-oligosaccharides.
    Shinozaki A; Hosokawa S; Nakazawa M; Ueda M; Sakamoto T
    Enzyme Microb Technol; 2015 Jun; 73-74():65-71. PubMed ID: 26002506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of the lys1 gene in Penicillium chrysogenum: homocitrate synthase levels, alpha-aminoadipic acid pool and penicillin production.
    Bañuelos O; Casqueiro J; Gutiérrez S; Martín JF
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):69-77. PubMed ID: 10952007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cloning and characterization of a novel glutathione transferase gene from Penicillium chrysogenum].
    Zhang Y; Wang FQ; Zheng GZ; Dai M; Liu J; Zhao Y; Ren ZH; Zhao BH; Jia Q
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):618-22. PubMed ID: 17822032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes.
    Jónás Á; Fekete E; Flipphi M; Sándor E; Jäger S; Molnár ÁP; Szentirmai A; Karaffa L
    J Antibiot (Tokyo); 2014 Jul; 67(7):489-97. PubMed ID: 24690910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of an internal protease cleavage site in the Ssy5p component of the amino acid sensor of Saccharomyces cerevisiae and functional characterization of the resulting pro- and protease domains by gain-of-function genetics.
    Poulsen P; Lo Leggio L; Kielland-Brandt MC
    Eukaryot Cell; 2006 Mar; 5(3):601-8. PubMed ID: 16524914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum.
    Bartoszewska M; Kiel JA; Bovenberg RA; Veenhuis M; van der Klei IJ
    Appl Environ Microbiol; 2011 Feb; 77(4):1413-22. PubMed ID: 21169429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nagA gene of Penicillium chrysogenum encoding beta-N-acetylglucosaminidase.
    Díez B; Rodríguez-Sáiz M; de la Fuente JL; Moreno MA; Barredo JL
    FEMS Microbiol Lett; 2005 Jan; 242(2):257-64. PubMed ID: 15621446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae.
    Regenberg B; Holmberg S; Olsen LD; Kielland-Brandt MC
    Curr Genet; 1998 Mar; 33(3):171-7. PubMed ID: 9508791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of ammonium ions on the uptake of L-leucine in Saccharomyces cerevisiae. Repression and inhibition of transport systems].
    Kotliar N; Stella CA; Ramos EH
    Rev Argent Microbiol; 1990; 22(1):7-16. PubMed ID: 2274663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.