BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15294835)

  • 1. Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors.
    Ayala-Del-Río HL; Callister SJ; Criddle CS; Tiedje JM
    Appl Environ Microbiol; 2004 Aug; 70(8):4950-60. PubMed ID: 15294835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of trichloroethene-contaminated water with a fluidized-bed bioreactor.
    Segar RL; Leung SY; Vivek SA
    Ann N Y Acad Sci; 1997 Nov; 829():83-96. PubMed ID: 9472314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
    Futamata H; Nagano Y; Watanabe K; Hiraishi A
    Appl Environ Microbiol; 2005 Feb; 71(2):904-11. PubMed ID: 15691947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments.
    Futamata H; Harayama S; Hiraishi A; Watanabe K
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):594-600. PubMed ID: 12536262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading.
    Basile LA; Erijman L
    FEMS Microbiol Ecol; 2010 Aug; 73(2):336-48. PubMed ID: 20500527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation.
    Futamata H; Harayama S; Watanabe K
    Appl Environ Microbiol; 2001 Oct; 67(10):4671-7. PubMed ID: 11571171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules.
    Zhang Y; Tay JH
    Biodegradation; 2014 Apr; 25(2):227-37. PubMed ID: 23846132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene.
    Shih C; Davey ME; Zhou J; Tiedje JM; Criddle CS
    Appl Environ Microbiol; 1996 Aug; 62(8):2953-60. PubMed ID: 16535382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H; Zhang SY; Wang XL; Yang J; Gu JD; Zhu RL; Wang P; Lin KF; Liu YD
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor.
    Guieysse B; Wickström P; Forsman M; Mattiasson B
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):780-7. PubMed ID: 11601630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community structure and trichloroethylene degradation in groundwater.
    Humphries JA; Ashe AM; Smiley JA; Johnston CG
    Can J Microbiol; 2005 Jun; 51(6):433-9. PubMed ID: 16121220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-metabolic degradation activities of trichloroethylene by phenol-grown aerobic granules.
    Zhang Y; Tay JH
    J Biotechnol; 2012 Dec; 162(2-3):274-82. PubMed ID: 23026554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture.
    Macbeth TW; Cummings DE; Spring S; Petzke LM; Sorenson KS
    Appl Environ Microbiol; 2004 Dec; 70(12):7329-41. PubMed ID: 15574933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: effect of stress and bioaugmentation.
    Seshan H; Goyal MK; Falk MW; Wuertz S
    Water Res; 2014 Apr; 53():282-96. PubMed ID: 24530548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation.
    Jiang HL; Tay JH; Maszenan AM; Tay ST
    Appl Environ Microbiol; 2004 Nov; 70(11):6767-75. PubMed ID: 15528543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.
    Zhang Y; Tay J
    J Hazard Mater; 2015 Apr; 286():204-10. PubMed ID: 25577321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of trichloroethylene removal and bacterial community function based on pH-adjusted in an upflow anaerobic sludge blanket reactor.
    Zhang Y; Hu M; Li P; Wang X; Meng Q
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9289-97. PubMed ID: 26189017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis.
    Basile LA; Erijman L
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):863-72. PubMed ID: 18202843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.