BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15295048)

  • 1. Loss of Smad3 in acute T-cell lymphoblastic leukemia.
    Wolfraim LA; Fernandez TM; Mamura M; Fuller WL; Kumar R; Cole DE; Byfield S; Felici A; Flanders KC; Walz TM; Roberts AB; Aplan PD; Balis FM; Letterio JJ
    N Engl J Med; 2004 Aug; 351(6):552-9. PubMed ID: 15295048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation status of cyclin-dependent kinase inhibitor genes within the transforming growth factor beta pathway in human T-cell lymphoblastic lymphoma/leukemia.
    Scott SA; Kimura T; Dong WF; Ichinohasama R; Bergen S; Kerviche A; Sheridan D; DeCoteau JF
    Leuk Res; 2004 Dec; 28(12):1293-301. PubMed ID: 15475071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis.
    Imai Y; Kurokawa M; Izutsu K; Hangaishi A; Maki K; Ogawa S; Chiba S; Mitani K; Hirai H
    Oncogene; 2001 Jan; 20(1):88-96. PubMed ID: 11244507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2.
    Joyce NC; Harris DL; Mello DM
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-hydroxybutyrate-induced growth inhibition and collagen production in HK-2 cells are dependent on TGF-beta and Smad3.
    Guh JY; Chuang TD; Chen HC; Hung WC; Lai YH; Shin SJ; Chuang LY
    Kidney Int; 2003 Dec; 64(6):2041-51. PubMed ID: 14633126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia.
    Letterio JJ
    Oncogene; 2005 Aug; 24(37):5701-12. PubMed ID: 16123803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.
    Peng B; Fleming JB; Breslin T; Grau AM; Fojioka S; Abbruzzese JL; Evans DB; Ayers D; Wathen K; Wu T; Robertson KD; Chiao PJ
    Clin Cancer Res; 2002 Nov; 8(11):3628-38. PubMed ID: 12429655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of TGF-beta signaling genes in the normal, premalignant, and malignant human trophoblast: loss of smad3 in choriocarcinoma cells.
    Xu G; Chakraborty C; Lala PK
    Biochem Biophys Res Commun; 2001 Sep; 287(1):47-55. PubMed ID: 11549251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncogenic Ras blocks transforming growth factor-beta-induced cell-cycle arrest by degradation of p27 through a MEK/Erk/SKP2-dependent pathway.
    Schepers H; Wierenga AT; Eggen BJ; Vellenga E
    Exp Hematol; 2005 Jul; 33(7):747-57. PubMed ID: 15963850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGF-beta signaling, tumor suppression, and acute lymphoblastic leukemia.
    Downing JR
    N Engl J Med; 2004 Aug; 351(6):528-30. PubMed ID: 15295044
    [No Abstract]   [Full Text] [Related]  

  • 11. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta.
    Yang X; Letterio JJ; Lechleider RJ; Chen L; Hayman R; Gu H; Roberts AB; Deng C
    EMBO J; 1999 Mar; 18(5):1280-91. PubMed ID: 10064594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1.
    Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M
    Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer.
    Buck A; Buchholz M; Wagner M; Adler G; Gress T; Ellenrieder V
    Mol Cancer Res; 2006 Nov; 4(11):861-72. PubMed ID: 17114344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD.
    Chi XZ; Yang JO; Lee KY; Ito K; Sakakura C; Li QL; Kim HR; Cha EJ; Lee YH; Kaneda A; Ushijima T; Kim WJ; Ito Y; Bae SC
    Mol Cell Biol; 2005 Sep; 25(18):8097-107. PubMed ID: 16135801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions.
    Kalinina N; Agrotis A; Antropova Y; Ilyinskaya O; Smirnov V; Tararak E; Bobik A
    Arterioscler Thromb Vasc Biol; 2004 Aug; 24(8):1391-6. PubMed ID: 15166010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of transforming growth factor (TGF) beta1 type II receptor restores TGF-beta1 sensitivity and signaling in human prostate cancer cells.
    Guo Y; Kyprianou N
    Cell Growth Differ; 1998 Feb; 9(2):185-93. PubMed ID: 9486855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines.
    Dohda T; Maljukova A; Liu L; Heyman M; Grandér D; Brodin D; Sangfelt O; Lendahl U
    Exp Cell Res; 2007 Aug; 313(14):3141-52. PubMed ID: 17560996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism.
    Schiller M; Verrecchia F; Mauviel A
    Oncogene; 2003 Dec; 22(55):8881-90. PubMed ID: 14654784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of cooperative function of transforming growth factor-beta signaling proteins, smad3 with embryonic liver fodrin, a beta-spectrin, in primary biliary cirrhosis.
    Mishra B; Tang Y; Katuri V; Fleury T; Said AH; Rashid A; Jogunoori W; Mishra L
    Liver Int; 2004 Dec; 24(6):637-45. PubMed ID: 15566516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ikaros induces quiescence and T-cell differentiation in a leukemia cell line.
    Kathrein KL; Lorenz R; Innes AM; Griffiths E; Winandy S
    Mol Cell Biol; 2005 Mar; 25(5):1645-54. PubMed ID: 15713624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.