BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15295629)

  • 1. Photochemical and electrophysical production of radicals on millisecond timescales to probe the structure, dynamics and interactions of proteins.
    Maleknia SD; Wong JW; Downard KM
    Photochem Photobiol Sci; 2004 Aug; 3(8):741-8. PubMed ID: 15295629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical approaches to probe protein structure, folding, and interactions by mass spectrometry.
    Maleknia SD; Downard K
    Mass Spectrom Rev; 2001; 20(6):388-401. PubMed ID: 11997945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PROXIMO--a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS).
    Gerega SK; Downard KM
    Bioinformatics; 2006 Jul; 22(14):1702-9. PubMed ID: 16679333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry.
    Kiselar JG; Maleknia SD; Sullivan M; Downard KM; Chance MR
    Int J Radiat Biol; 2002 Feb; 78(2):101-14. PubMed ID: 11779360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Following molecular transitions with single residue spatial and millisecond time resolution.
    Shcherbakova I; Mitra S; Beer RH; Brenowitz M
    Methods Cell Biol; 2008; 84():589-615. PubMed ID: 17964944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in radical probe mass spectrometry for protein footprinting in chemical biology applications.
    Maleknia SD; Downard KM
    Chem Soc Rev; 2014 May; 43(10):3244-58. PubMed ID: 24590115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry.
    Maleknia SD; Kiselar JG; Downard KM
    Rapid Commun Mass Spectrom; 2002; 16(1):53-61. PubMed ID: 11754247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of macromolecular folding and structure by synchrotron x-ray radiolysis techniques.
    Maleknia SD; Ralston CY; Brenowitz MD; Downard KM; Chance MR
    Anal Biochem; 2001 Feb; 289(2):103-15. PubMed ID: 11161303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding of apomyoglobin examined by synchrotron footprinting.
    Chance MR
    Biochem Biophys Res Commun; 2001 Sep; 287(3):614-21. PubMed ID: 11563839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing solution-phase reaction dynamics with time-resolved X-ray liquidography.
    Ihee H
    Acc Chem Res; 2009 Feb; 42(2):356-66. PubMed ID: 19117426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical surface mapping of C14S-Sml1p for constrained computational modeling of protein structure.
    Sharp JS; Guo JT; Uchiki T; Xu Y; Dealwis C; Hettich RL
    Anal Biochem; 2005 May; 340(2):201-12. PubMed ID: 15840492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of protein concentration on the extent of gamma-ray-mediated oxidative labeling studied by electrospray mass spectrometry.
    Tong X; Wren JC; Konermann L
    Anal Chem; 2007 Aug; 79(16):6376-82. PubMed ID: 17628115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly.
    Qiu W; Zhang L; Kao YT; Lu W; Li T; Kim J; Sollenberger GM; Wang L; Zhong D
    J Phys Chem B; 2005 Sep; 109(35):16901-10. PubMed ID: 16853151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New approach for the detection of peptide- and protein-based radicals using a pre-fluorescent probe.
    Dang YM; Guo XQ
    Appl Spectrosc; 2006 Feb; 60(2):203-7. PubMed ID: 16542572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrotron radiolysis and mass spectrometry: a new approach to research on the actin cytoskeleton.
    Guan JQ; Almo SC; Chance MR
    Acc Chem Res; 2004 Apr; 37(4):221-9. PubMed ID: 15096059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved footprinting for the study of the structural dynamics of DNA-protein interactions.
    Sclavi B
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):745-8. PubMed ID: 18631151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.