These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15295629)

  • 41. Proteins protect lipid membranes from oxidation by thiyl radicals.
    Tweeddale HJ; Kondo M; Gebicki JM
    Arch Biochem Biophys; 2007 Mar; 459(2):151-8. PubMed ID: 17306209
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping protein-ligand interactions by hydroxyl-radical protein footprinting.
    Loizos N
    Methods Mol Biol; 2004; 261():199-210. PubMed ID: 15064460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein Footprinting with Radical Probe Mass Spectrometry- Two Decades of Achievement.
    Maleknia SD; Downard KM
    Protein Pept Lett; 2019; 26(1):4-15. PubMed ID: 30484400
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Jul; 77(14):4549-55. PubMed ID: 16013872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of protein backbone folding on the stability of protein-ligand complexes.
    Estrada E; Uriarte E; Vilar S
    J Proteome Res; 2006 Jan; 5(1):105-11. PubMed ID: 16396500
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry.
    Pan Y; Stocks BB; Brown L; Konermann L
    Anal Chem; 2009 Jan; 81(1):28-35. PubMed ID: 19055344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.
    Cui Q; Sulea T; Schrag JD; Munger C; Hung MN; Naïm M; Cygler M; Purisima EO
    J Mol Biol; 2008 Jun; 379(4):787-802. PubMed ID: 18479705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches.
    Konermann L; Tong X; Pan Y
    J Mass Spectrom; 2008 Aug; 43(8):1021-36. PubMed ID: 18523973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase.
    Fontana A; Spolaore B; Mero A; Veronese FM
    Adv Drug Deliv Rev; 2008 Jan; 60(1):13-28. PubMed ID: 17916398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of protein-folding pathways by reduced-space modeling.
    Kmiecik S; Kolinski A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-timescale molecular dynamics simulations of protein structure and function.
    Klepeis JL; Lindorff-Larsen K; Dror RO; Shaw DE
    Curr Opin Struct Biol; 2009 Apr; 19(2):120-7. PubMed ID: 19361980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atom-by-atom analysis of global downhill protein folding.
    Sadqi M; Fushman D; Muñoz V
    Nature; 2006 Jul; 442(7100):317-21. PubMed ID: 16799571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering.
    Høiberg-Nielsen R; Tofteng Shelton AP; Sørensen KK; Roessle M; Svergun DI; Thulstrup PW; Jensen KJ; Arleth L
    Chembiochem; 2008 Nov; 9(16):2663-72. PubMed ID: 18850602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes.
    Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF
    J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron transfer between guanosine radicals and amino acids in aqueous solution. II. Reduction of guanosine radicals by tryptophan.
    Morozova OB; Kiryutin AS; Yurkovskaya AV
    J Phys Chem B; 2008 Mar; 112(9):2747-54. PubMed ID: 18266352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.
    Crean C; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2008 Feb; 21(2):358-73. PubMed ID: 18159932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy.
    Linser R; Fink U; Reif B
    J Am Chem Soc; 2009 Sep; 131(38):13703-8. PubMed ID: 19736939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.