These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15295629)

  • 61. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.
    Aboitiz N; Vila-Perelló M; Groves P; Asensio JL; Andreu D; Cañada FJ; Jiménez-Barbero J
    Chembiochem; 2004 Sep; 5(9):1245-55. PubMed ID: 15368576
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Residue-level NMR view of the urea-driven equilibrium folding transition of SUMO-1 (1-97): native preferences do not increase monotonously.
    Kumar A; Srivastava S; Kumar Mishra R; Mittal R; Hosur RV
    J Mol Biol; 2006 Aug; 361(1):180-94. PubMed ID: 16824543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 64. On the influence of charged side chains on the folding-unfolding equilibrium of beta-peptides: a molecular dynamics simulation study.
    Glättli A; Daura X; Bindschädler P; Jaun B; Mahajan YR; Mathad RI; Rueping M; Seebach D; van Gunsteren WF
    Chemistry; 2005 Dec; 11(24):7276-93. PubMed ID: 16247825
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Study of the ribonuclease-S-protein-peptide complex using a radical probe and electrospray ionization mass spectrometry.
    Wong JW; Maleknia SD; Downard KM
    Anal Chem; 2003 Apr; 75(7):1557-63. PubMed ID: 12705585
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Achieving broad molecular insights into dynamic protein interactions by integrated structural-kinetic approaches.
    Grossman M; Sela-Passwell N; Sagi I
    Curr Opin Struct Biol; 2011 Oct; 21(5):678-85. PubMed ID: 21945040
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins.
    Gau BC; Chen H; Zhang Y; Gross ML
    Anal Chem; 2010 Sep; 82(18):7821-7. PubMed ID: 20738105
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterizing Cellular Proteins with In-cell Fast Photochemical Oxidation of Proteins.
    Chea EE; Rinas A; Espino JA; Jones LM
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225159
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Combining ultrarapid mixing with photochemical oxidation to probe protein folding.
    Wu L; Lapidus LJ
    Anal Chem; 2013 May; 85(10):4920-4. PubMed ID: 23593999
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool.
    Johnson DT; Di Stefano LH; Jones LM
    J Biol Chem; 2019 Aug; 294(32):11969-11979. PubMed ID: 31262727
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enabling Real-Time Compensation in Fast Photochemical Oxidations of Proteins for the Determination of Protein Topography Changes.
    Misra SK; Sharp JS
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 32955502
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temperature jump and fast photochemical oxidation probe submillisecond protein folding.
    Chen J; Rempel DL; Gross ML
    J Am Chem Soc; 2010 Nov; 132(44):15502-4. PubMed ID: 20958033
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells.
    Espino JA; Mali VS; Jones LM
    Anal Chem; 2015 Aug; 87(15):7971-8. PubMed ID: 26146849
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Glycosylation protects proteins against free radicals generated from toxic xenobiotics.
    Martínek V; Sklenár J; Dracínsky M; Sulc M; Hofbauerová K; Bezouska K; Frei E; Stiborová M
    Toxicol Sci; 2010 Oct; 117(2):359-74. PubMed ID: 20616208
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A simple free-radical polymerization method for the fabrication of microscale acrylonitrile fibers for cellular probing.
    Guido MR
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.prot5155. PubMed ID: 20147085
    [No Abstract]   [Full Text] [Related]  

  • 78. Protein fluorescence, dynamics and function: exploration of analogy between electronically excited and biocatalytic transition states.
    Demchenko AP
    Biochim Biophys Acta; 1994 Dec; 1209(2):149-64. PubMed ID: 7811685
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry.
    Gupta S; D'Mello R; Chance MR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14882-7. PubMed ID: 22927377
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-Resolution Hydroxyl Radical Protein Footprinting: Biophysics Tool for Drug Discovery.
    Kiselar J; Chance MR
    Annu Rev Biophys; 2018 May; 47():315-333. PubMed ID: 29539273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.