These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15295793)

  • 1. Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations.
    Stoner MR; Fischer N; Nixon L; Buckel S; Benke M; Austin F; Randolph TW; Kendrick BS
    J Pharm Sci; 2004 Sep; 93(9):2332-42. PubMed ID: 15295793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of excipient concentrations during the final ultrafiltration/diafiltration step of therapeutic antibody.
    Miao F; Velayudhan A; DiBella E; Shervin J; Felo M; Teeters M; Alred P
    Biotechnol Prog; 2009; 25(4):964-72. PubMed ID: 19569193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting diafiltration solution compositions for final ultrafiltration/diafiltration steps of monoclonal antibodies.
    Teeters M; Bezila D; Benner T; Alfonso P; Alred P
    Biotechnol Bioeng; 2011 Jun; 108(6):1338-46. PubMed ID: 21328314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular interactions during ultrafiltration of pegylated proteins.
    Ruanjaikaen K; Zydney AL
    Biotechnol Prog; 2013; 29(3):655-63. PubMed ID: 23436792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Small-Scale Process for Predicting Donnan and Volume Exclusion Effects During Ultrafiltration/Diafiltration Process Development.
    Abel J; Kosky A; Ball N; Bacon H; Kaushik R; Kleemann GR
    J Pharm Sci; 2018 May; 107(5):1296-1303. PubMed ID: 29339134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of protein and solution properties on the Donnan effect during the ultrafiltration of proteins.
    Bolton GR; Boesch AW; Basha J; Lacasse DP; Kelley BD; Acharya H
    Biotechnol Prog; 2011; 27(1):140-52. PubMed ID: 21312362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic model of pH and excipient concentration during ultrafiltration and diafiltration processes of therapeutic antibodies.
    Ladwig JE; Zhu X; Rolandi P; Hart R; Robinson J; Rydholm A
    Biotechnol Prog; 2020 Sep; 36(5):e2993. PubMed ID: 32185869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous background correction of refractive index signal to improve monoclonal antibody concentration monitoring during UF/DF and SPTFF operations.
    Webster TA; Turner K; DuBois C; MacDougall R; Mason C
    Bioprocess Biosyst Eng; 2022 Apr; 45(4):647-657. PubMed ID: 34989873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small molecule clearance in ultrafiltration/diafiltration in relation to protein interactions:Study of citrate binding to a Fab.
    Harinarayan C; Skidmore K; Kao Y; Zydney AL; van Reis R
    Biotechnol Bioeng; 2009 Apr; 102(6):1718-22. PubMed ID: 19132743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of ultrafiltration/diafiltration processes for partially bound impurities.
    Shao J; Zydney AL
    Biotechnol Bioeng; 2004 Aug; 87(3):286-92. PubMed ID: 15281103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH and excipient profiles during formulation of highly concentrated biotherapeutics using bufferless media.
    Jabra MG; Tao Y; Moomaw JF; Yu Z; Hotovec BJ; Geng SB; Zydney AL
    Biotechnol Bioeng; 2020 Nov; 117(11):3390-3399. PubMed ID: 32667708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic model to account for the Donnan and volume exclusion effects in ultrafiltration/diafiltration process of protein formulations.
    Yu Z; Moomaw JF; Thyagarajapuram NR; Geng SB; Bent CJ; Tang Y
    Biotechnol Prog; 2021 Mar; 37(2):e3106. PubMed ID: 33289341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH variations during diafiltration due to buffer nonidealities.
    Baek Y; Yang D; Singh N; Arunkumar A; Ghose S; Li ZJ; Zydney AL
    Biotechnol Prog; 2017 Nov; 33(6):1555-1560. PubMed ID: 28840650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of PEGylated alpha-lactalbumin from unreacted precursors and byproducts using ultrafiltration.
    Molek JR; Zydney AL
    Biotechnol Prog; 2007; 23(6):1417-24. PubMed ID: 17914863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of singly PEGylated α-lactalbumin using charged ultrafiltration membranes.
    Ruanjaikaen K; Zydney AL
    Biotechnol Bioeng; 2011 Apr; 108(4):822-9. PubMed ID: 21404256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clearance of extractables and leachables from single-use technologies via ultrafiltration/diafiltration operations.
    Magarian N; Lee K; Nagpal K; Skidmore K; Mahajan E
    Biotechnol Prog; 2016 May; 32(3):718-24. PubMed ID: 27071939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of protein charge variants by ultrafiltration.
    Ebersold MF; Zydney AL
    Biotechnol Prog; 2004; 20(2):543-9. PubMed ID: 15059001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternate diafiltration strategy to mitigate protein precipitation for low solubility proteins.
    Gefroh E; Lutz H
    Biotechnol Prog; 2014; 30(3):646-55. PubMed ID: 24449613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein purification by ultrafiltration using a beta-galactosidase fusion tag.
    Sakhamuru K; Hough DW; Chaudhuri JB
    Biotechnol Prog; 2000; 16(2):296-8. PubMed ID: 10753458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ultrafiltration/diafiltration for the processing of antisense oligonucleotides.
    Gronke RS; Ruanjaikaen K; Delavari A; Immel-Brown JP; Penrod JC; Lam Y; Antia FD
    Biotechnol Prog; 2023; 39(4):e3350. PubMed ID: 37186510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.