BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15296184)

  • 21. A two-step, one-pot enzymatic synthesis of 2-substituted 1,3-diols.
    Kalaitzakis D; Smonou I
    J Org Chem; 2010 Dec; 75(24):8658-61. PubMed ID: 21090643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of α-hydroxy ketones and vicinal (
    Muschallik L; Molinnus D; Jablonski M; Kipp CR; Bongaerts J; Pohl M; Wagner T; Schöning MJ; Selmer T; Siegert P
    RSC Adv; 2020 Mar; 10(21):12206-12216. PubMed ID: 35497574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5.
    Ranjith NK; Ramana ChV; Sasikala Ch
    Can J Microbiol; 2008 Oct; 54(10):829-34. PubMed ID: 18923551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Pd/C-catalyzed redox reactions between aliphatic secondary alcohols and ketones under hydrogenation conditions: application to H-D exchange reaction and the mechanistic study.
    Esaki H; Ohtaki R; Maegawa T; Monguchi Y; Sajiki H
    J Org Chem; 2007 Mar; 72(6):2143-50. PubMed ID: 17315934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insight into substrate differentiation of the sugar-metabolizing enzyme galactitol dehydrogenase from Rhodobacter sphaeroides D.
    Carius Y; Christian H; Faust A; Zander U; Klink BU; Kornberger P; Kohring GW; Giffhorn F; Scheidig AJ
    J Biol Chem; 2010 Jun; 285(26):20006-14. PubMed ID: 20410293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose.
    Zhang L; Mu W; Jiang B; Zhang T
    Biotechnol Lett; 2009 Jun; 31(6):857-62. PubMed ID: 19205890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis.
    Kühn A; Yu S; Giffhorn F
    Appl Environ Microbiol; 2006 Feb; 72(2):1248-57. PubMed ID: 16461673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective oxidation and reduction reactions with cofactor regeneration mediated by galactitol-, lactate-, and formate dehydrogenases immobilized on magnetic nanoparticles.
    Demir AS; Talpur FN; Betul Sopaci S; Kohring GW; Celik A
    J Biotechnol; 2011 Apr; 152(4):176-83. PubMed ID: 21392547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose.
    Fekete E; Karaffa L; Sándor E; Bányai I; Seiboth B; Gyémánt G; Sepsi A; Szentirmai A; Kubicek CP
    Arch Microbiol; 2004 Jan; 181(1):35-44. PubMed ID: 14624333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D; Morgan JE; Gennis RB
    Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions.
    Kaluzna IA; Matsuda T; Sewell AK; Stewart JD
    J Am Chem Soc; 2004 Oct; 126(40):12827-32. PubMed ID: 15469278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ability of different biomaterials to enantioselectively catalyze oxidation and reduction reactions.
    Nagaoka H
    Biotechnol Prog; 2004; 20(1):128-33. PubMed ID: 14763834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol.
    Gal J; DeVito D; Harper TW
    Drug Metab Dispos; 1981; 9(6):557-60. PubMed ID: 6120816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde.
    Richter N; Neumann M; Liese A; Wohlgemuth R; Eggert T; Hummel W
    Chembiochem; 2009 Jul; 10(11):1888-96. PubMed ID: 19579248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-way biohydrogen transfer for oxidation of sec-alcohols.
    Lavandera I; Kern A; Resch V; Ferreira-Silva B; Glieder A; Fabian WM; de Wildeman S; Kroutil W
    Org Lett; 2008 Jun; 10(11):2155-8. PubMed ID: 18459797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars.
    Jose J; von Schwichow S
    Chembiochem; 2004 Apr; 5(4):491-9. PubMed ID: 15185373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].
    Biofizika; 2005; 50(4):668-75. PubMed ID: 16212058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone.
    Bulut D; Duangdee N; Gröger H; Berkessel A; Hummel W
    Chembiochem; 2016 Jul; 17(14):1349-58. PubMed ID: 27123855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RuO4-catalysed dihydroxylation, ketohydroxylation and mono oxidation--novel oxidation reactions for the synthesis of diols and alpha-hydroxy ketones.
    Plietker B; Niggemann M
    Org Biomol Chem; 2004 Sep; 2(17):2403-7. PubMed ID: 15326516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathway of galactitol catabolism in Klebsiella pneumoniae: oxidation of L-galactitol-1-phosphate by a NAD-specific dehydrogenase.
    Markwell JP; Anderson RL
    Arch Biochem Biophys; 1981 Jul; 209(2):592-7. PubMed ID: 7027959
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.