These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15296221)

  • 1. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process.
    Nikolaev P
    J Nanosci Nanotechnol; 2004 Apr; 4(4):307-16. PubMed ID: 15296221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics.
    Dateo CE; Gökçen T; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):523-34. PubMed ID: 12908291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis.
    Gökçen T; Dateo CE; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):535-44. PubMed ID: 12908292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide.
    Scott CD; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):75-9. PubMed ID: 12908232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for nucleation and growth of single wall carbon nanotubes via the HiPcO process: a catalyst concentration study.
    Carver RL; Peng H; Sadana AK; Nikolaev P; Arepalli S; Scott CD; Billups WE; Hauge RH; Smalley RE
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1035-40. PubMed ID: 16108423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production.
    Resasco DE; Herrera JE; Balzano L
    J Nanosci Nanotechnol; 2004 Apr; 4(4):398-407. PubMed ID: 15296229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations.
    Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman-active modes of single-walled carbon nanotubes derived from the gas-phase decomposition of CO (HiPco process).
    Chen G; Sumanasekera GU; Pradhan BK; Gupta R; Eklund PC; Bronikowski MJ; Smalley RE
    J Nanosci Nanotechnol; 2002 Dec; 2(6):621-6. PubMed ID: 12908425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ optical analysis of the gas phase during the formation of carbon nanotubes.
    Dorval N; Foutel-Richard A; Cau M; Loiseau A; Attal-Trétout B; Cochon JL; Pigache D; Bouchardy P; Krüger V; Geigle KP
    J Nanosci Nanotechnol; 2004 Apr; 4(4):450-62. PubMed ID: 15296236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts.
    Nagy JB; Bister G; Fonseca A; Méhn D; Kónya Z; Kiricsi I; Horváth ZE; Biró LP
    J Nanosci Nanotechnol; 2004 Apr; 4(4):326-45. PubMed ID: 15296223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of pile networks by long carbon nanotubes from decomposition of CO on Co-Mo film.
    Zhu YT; Egeland GW; Li Y; Jia QX; Gallegos J; Serquis A; Liao XZ; Peterson DE; Dye RC; Roop BJ; Hoffbauer MA
    J Nanosci Nanotechnol; 2004; 4(1-2):189-91. PubMed ID: 15112565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic catalyst for synthesizing quasi-aligned, well-graphitized multiwalled carbon nanotube bundles on a large scale by the catalytic chemical vapor deposition method.
    Mukhopadhyay K; Mathur GN
    J Nanosci Nanotechnol; 2002 Apr; 2(2):197-201. PubMed ID: 12908309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas dwell time control for rapid and long lifetime growth of single-walled carbon nanotube forests.
    Yasuda S; Futaba DN; Yamada T; Yumura M; Hata K
    Nano Lett; 2011 Sep; 11(9):3617-23. PubMed ID: 21823602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.
    Wang X; Li Q; Xie J; Jin Z; Wang J; Li Y; Jiang K; Fan S
    Nano Lett; 2009 Sep; 9(9):3137-41. PubMed ID: 19650638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates.
    Wang X; Li Q; Zheng G; Ren Y; Jiang K; Fan S
    Nanotechnology; 2010 Oct; 21(39):395602. PubMed ID: 20808038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.