These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15296224)

  • 1. Nucleation and growth of single-walled nanotubes: the role of metallic catalysts.
    Gavillet J; Thibault J; Stéphan O; Amara H; Loiseau A; Bichara Ch; Gaspard JP; Ducastelle F
    J Nanosci Nanotechnol; 2004 Apr; 4(4):346-59. PubMed ID: 15296224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of single-walled carbon nanotubes from sharp metal tips.
    Rodríguez-Manzo JA; Janowska I; Pham-Huu C; Tolvanen A; Krasheninnikov AV; Nordlund K; Banhart F
    Small; 2009 Dec; 5(23):2710-5. PubMed ID: 19743432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organization of carbide superlattice and nucleation of carbon nanotubes.
    Tsui F; Ryan PA
    J Nanosci Nanotechnol; 2004 Apr; 4(4):408-13. PubMed ID: 15296230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser ablation process for single-walled carbon nanotube production.
    Arepalli S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):317-25. PubMed ID: 15296222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes.
    Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):368-76. PubMed ID: 15296226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes.
    Krestinin AV; Kislov MB; Ryabenko AG
    J Nanosci Nanotechnol; 2004 Apr; 4(4):390-7. PubMed ID: 15296228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations.
    Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ optical analysis of the gas phase during the formation of carbon nanotubes.
    Dorval N; Foutel-Richard A; Cau M; Loiseau A; Attal-Trétout B; Cochon JL; Pigache D; Bouchardy P; Krüger V; Geigle KP
    J Nanosci Nanotechnol; 2004 Apr; 4(4):450-62. PubMed ID: 15296236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale simulations of carbon nanotube nucleation and growth: mesoscopic continuum calculations.
    Pannala S; Wood RF
    J Nanosci Nanotechnol; 2004 Apr; 4(4):463-70. PubMed ID: 15296237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process.
    Nikolaev P
    J Nanosci Nanotechnol; 2004 Apr; 4(4):307-16. PubMed ID: 15296221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organization of carbide superlattice and nucleation of carbon nanotubes.
    Tsui F; Ryan PA
    J Nanosci Nanotechnol; 2003 Dec; 3(6):529-34. PubMed ID: 15002135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The problem of purifying single-walled carbon nanotubes.
    Vivekchand SR; Jayakanth R; Govindaraj A; Rao CN
    Small; 2005 Oct; 1(10):920-3. PubMed ID: 17193370
    [No Abstract]   [Full Text] [Related]  

  • 17. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts.
    Nagy JB; Bister G; Fonseca A; Méhn D; Kónya Z; Kiricsi I; Horváth ZE; Biró LP
    J Nanosci Nanotechnol; 2004 Apr; 4(4):326-45. PubMed ID: 15296223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production.
    Resasco DE; Herrera JE; Balzano L
    J Nanosci Nanotechnol; 2004 Apr; 4(4):398-407. PubMed ID: 15296229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic catalyst for synthesizing quasi-aligned, well-graphitized multiwalled carbon nanotube bundles on a large scale by the catalytic chemical vapor deposition method.
    Mukhopadhyay K; Mathur GN
    J Nanosci Nanotechnol; 2002 Apr; 2(2):197-201. PubMed ID: 12908309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of carbon nanotubes on nanoporous titania templates.
    Misra M; Paramguru K; Mohapatra SK
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2640-6. PubMed ID: 17685278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.