These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15296224)

  • 21. Single crystalline nickel nanorods inside carbon nanotubes: growth behavior, structure, and magnetic properties.
    Tyagi PK; Misra A; Singh MK; Titus E; Misra DS; Ghatak J; Satyam PV; Roy M
    J Nanosci Nanotechnol; 2005 Apr; 5(4):596-600. PubMed ID: 16004125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotube synthesis in a flame with independently prepared laser-ablated catalyst particles.
    Vander Wal RL; Berger GM; Ticich TM
    J Nanosci Nanotechnol; 2003 Jun; 3(3):241-5. PubMed ID: 14503409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes.
    Banhart F; Li J; Terrones M
    Small; 2005 Oct; 1(10):953-6. PubMed ID: 17193375
    [No Abstract]   [Full Text] [Related]  

  • 24. Growth of double-walled carbon nanotubes using a conditioning catalyst.
    Muramatsu H; Hayashi T; Kim YA; Endo M; Terrones M; Dresselhaus MS
    J Nanosci Nanotechnol; 2005 Mar; 5(3):404-8. PubMed ID: 15913246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tight-binding grand canonical Monte Carlo study of the catalytic growth of carbon nanotubes.
    Amara H; Bichara C; Ducastelle F
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6099-104. PubMed ID: 19198351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thin single-walled carbon nanotubes with narrow chirality distribution: constructive interplay of plasma and Gibbs-Thomson effects.
    Ostrikov KK; Mehdipour H
    ACS Nano; 2011 Oct; 5(10):8372-82. PubMed ID: 21905692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.
    Sharon M; Apte PR; Purandare SC; Zacharia R
    J Nanosci Nanotechnol; 2005 Feb; 5(2):288-95. PubMed ID: 15853150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arc process parameters for single-walled carbon nanotube growth and production: experiments and modeling.
    Farhat S; Hinkov I; Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):377-89. PubMed ID: 15296227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress on the growth mechanism of carbon nanotubes: a review.
    Tessonnier JP; Su DS
    ChemSusChem; 2011 Jul; 4(7):824-47. PubMed ID: 21732543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes.
    Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P
    J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes.
    Jiang K; Feng C; Liu K; Fan S
    J Nanosci Nanotechnol; 2007; 7(4-5):1494-504. PubMed ID: 17450917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale simulations of carbon nanotube nucleation and growth: electronic structure calculations.
    Wells JC; Noid DW; Sumpter BG; Wood RF; Zhang Q
    J Nanosci Nanotechnol; 2004 Apr; 4(4):414-22. PubMed ID: 15296231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes.
    Zhu H; Suenaga K; Hashimoto A; Urita K; Hata K; Iijima S
    Small; 2005 Dec; 1(12):1180-3. PubMed ID: 17193414
    [No Abstract]   [Full Text] [Related]  

  • 35. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes.
    Bajwa N; Li X; Ajayan PM; Vajtai R
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6054-64. PubMed ID: 19198346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the catalyst during carbon nanotube growth.
    Robertson J; Hofmann S; Cantoro M; Parvez A; Ducati C; Zhong G; Sharma R; Mattevi C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6105-11. PubMed ID: 19198352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling the nucleation and chirality selection of carbon nanotubes.
    Li L; Reich S; Robertson J
    J Nanosci Nanotechnol; 2006 May; 6(5):1290-7. PubMed ID: 16792355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoscale plasma chemistry enables fast, size-selective nanotube nucleation.
    Ostrikov KK; Mehdipour H
    J Am Chem Soc; 2012 Mar; 134(9):4303-12. PubMed ID: 22299631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition.
    Dong L; Jiao J; Foxley S; Tuggle DW; Mosher CL; Grathoff GH
    J Nanosci Nanotechnol; 2002 Apr; 2(2):155-60. PubMed ID: 12908303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels.
    Elías AL; Botello-Méndez AR; Meneses-Rodríguez D; Jehová González V; Ramírez-González D; Ci L; Muñoz-Sandoval E; Ajayan PM; Terrones H; Terrones M
    Nano Lett; 2010 Feb; 10(2):366-72. PubMed ID: 19691280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.