These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15296231)

  • 1. Multiscale simulations of carbon nanotube nucleation and growth: electronic structure calculations.
    Wells JC; Noid DW; Sumpter BG; Wood RF; Zhang Q
    J Nanosci Nanotechnol; 2004 Apr; 4(4):414-22. PubMed ID: 15296231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale simulations of carbon nanotube nucleation and growth: mesoscopic continuum calculations.
    Pannala S; Wood RF
    J Nanosci Nanotechnol; 2004 Apr; 4(4):463-70. PubMed ID: 15296237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption-induced restructuring and early stages of carbon-nanotube growth on Ni nanoparticles.
    Wang Y; Barcaro G; Negreiros FR; Visart de Bocarmé T; Moors M; Kruse N; Hou M; Fortunelli A
    Chemistry; 2013 Jan; 19(1):406-13. PubMed ID: 23169259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles calculations of nickel, cadmium, and lead adsorption on a single-walled (10,0) carbon nanotube.
    Bastos M; Camps I
    J Mol Model; 2014 Feb; 20(2):2094. PubMed ID: 24515718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes.
    Krestinin AV; Kislov MB; Ryabenko AG
    J Nanosci Nanotechnol; 2004 Apr; 4(4):390-7. PubMed ID: 15296228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures.
    Sharma R; Chee SW; Herzing A; Miranda R; Rez P
    Nano Lett; 2011 Jun; 11(6):2464-71. PubMed ID: 21604794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocatalyst structure as a template to define chirality of nascent single-walled carbon nanotubes.
    Gómez-Gualdrón DA; Zhao J; Balbuena PB
    J Chem Phys; 2011 Jan; 134(1):014705. PubMed ID: 21219018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and growth of single-walled nanotubes: the role of metallic catalysts.
    Gavillet J; Thibault J; Stéphan O; Amara H; Loiseau A; Bichara Ch; Gaspard JP; Ducastelle F
    J Nanosci Nanotechnol; 2004 Apr; 4(4):346-59. PubMed ID: 15296224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in single-walled carbon nanotube chirality during growth and regrowth.
    Zhu W; Rosén A; Bolton K
    J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes.
    Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA
    J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube.
    Aghashiri A; Fotooh FK; Hashemian S
    J Mol Model; 2019 Jun; 25(7):185. PubMed ID: 31183580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.
    Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H
    J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial evolutions of Co and Ni atoms during single-walled carbon nanotubes formation: measurements and modeling.
    Cau M; Dorval N; Cao B; Attal-Trétout B; Cochon JL; Loiseau A; Farhat S; Scott CD
    J Nanosci Nanotechnol; 2006 May; 6(5):1298-308. PubMed ID: 16792356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single crystalline nickel nanorods inside carbon nanotubes: growth behavior, structure, and magnetic properties.
    Tyagi PK; Misra A; Singh MK; Titus E; Misra DS; Ghatak J; Satyam PV; Roy M
    J Nanosci Nanotechnol; 2005 Apr; 5(4):596-600. PubMed ID: 16004125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent functionalization of carbon nanotubes with porphyrins: meso-tetraphenylporphine and its transition metal complexes.
    Basiuk EV; Basiuk VA; Santiago P; Puente-Lee I
    J Nanosci Nanotechnol; 2007; 7(4-5):1530-8. PubMed ID: 17450922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic action of gold and copper crystals in the growth of carbon nanotubes.
    Tyagi PK; Janowska I; Cretu O; Pham-Huu C; Banhart F
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3609-15. PubMed ID: 21776744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations.
    Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced binding strength between metal nanoclusters and carbon nanotubes with an atomic nickel defect.
    Sung D; Park N; Kim G; Hong S
    Nanotechnology; 2012 May; 23(20):205204. PubMed ID: 22544038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the catalyst in the growth of single-wall carbon nanotubes.
    Balbuena PB; Zhao J; Huang S; Wang Y; Sakulchaicharoen N; Resasco DE
    J Nanosci Nanotechnol; 2006 May; 6(5):1247-58. PubMed ID: 16792351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.