These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15296259)
21. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe--a review based on the EURADOS questionnaire. Olko P; Currivan L; van Dijk JW; Lopez MA; Wernli C Radiat Prot Dosimetry; 2006; 120(1-4):298-302. PubMed ID: 16581929 [TBL] [Abstract][Full Text] [Related]
22. Relative thermoluminescence efficiency of TLD-600 and TLD-700 dosemeters irradiated with 59.8 MeV per nucleon krypton-86 ions. Mukherjee B; Ronningen RM; Cross P Radiat Prot Dosimetry; 2002; 100(1-4):537-9. PubMed ID: 12382938 [TBL] [Abstract][Full Text] [Related]
23. Determination of LiF:Mg,Ti and LiF:Mg,Cu,P TL efficiency for X-rays and their application to Monte Carlo simulations of dosemeter response. Hranitzky C; Stadtmann H; Olko P Radiat Prot Dosimetry; 2006; 119(1-4):483-6. PubMed ID: 16822775 [TBL] [Abstract][Full Text] [Related]
24. Comparison of two extremity dosemeters based on LiF:Mg,Cu,P thin detectors for mixed beta-gamma fields. Ginjaume M; Pérez S; Ortega X; Duch MA Radiat Prot Dosimetry; 2006; 120(1-4):316-20. PubMed ID: 16644980 [TBL] [Abstract][Full Text] [Related]
25. USE OF A SIMPLE THERMALISED NEUTRON FIELD FOR QUALITY ACCEPTANCE OF WHOLE BODY TLDS. Gilvin PJ; Baker ST; Eakins JS; Tanner RJ Radiat Prot Dosimetry; 2016 Sep; 170(1-4):108-12. PubMed ID: 26801052 [TBL] [Abstract][Full Text] [Related]
26. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions. Moscovitch M; St John TJ; Cassata JR; Blake PK; Rotunda JE; Ramlo M; Velbeck KJ; Luo LZ Radiat Prot Dosimetry; 2006; 119(1-4):248-54. PubMed ID: 16835277 [TBL] [Abstract][Full Text] [Related]
27. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry. Duggan L; Hood C; Warren-Forward H; Haque M; Kron T Phys Med Biol; 2004 Sep; 49(17):3831-45. PubMed ID: 15470908 [TBL] [Abstract][Full Text] [Related]
28. Energy response of different types of RADOS personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) TL detectors. Obryk B; Hranitzky C; Stadtmann H; Budzanowski M; Olko P Radiat Prot Dosimetry; 2011 Mar; 144(1-4):211-4. PubMed ID: 21227957 [TBL] [Abstract][Full Text] [Related]
29. Microdosimetric interpretation of the photon energy response of LiF:Mg,Ti detectors. Olko P; Bilski P; Kim JL Radiat Prot Dosimetry; 2002; 100(1-4):119-22. PubMed ID: 12382842 [TBL] [Abstract][Full Text] [Related]
30. Pre- and post-irradiation fading effect for LiF:Mg,Ti and LiF:Mg,Cu,P materials used in routine monitoring. Carinou E; Askounis P; Dimitropoulou F; Kiranos G; Kyrgiakou H; Nirgianaki E; Papadomarkaki E; Kamenopoulou V Radiat Prot Dosimetry; 2011 Mar; 144(1-4):207-10. PubMed ID: 21199822 [TBL] [Abstract][Full Text] [Related]
31. UV-induced bleaching of deep traps in Harshaw TLD LiF:Mg,Cu,P and LiF:Mg,Ti. Benevides L; Voss S; Nita I; Rotunda J; Velbeck K; Luo LZ; Moscovitch M Radiat Prot Dosimetry; 2011 Mar; 144(1-4):199-201. PubMed ID: 21310735 [TBL] [Abstract][Full Text] [Related]
32. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS. Pohorecki W; Obryk B Radiat Prot Dosimetry; 2018 Aug; 180(1-4):129-133. PubMed ID: 29036685 [TBL] [Abstract][Full Text] [Related]
33. Effects of high ambient temperature on glow-peak fading properties of LiF:Mg,Ti thermoluminescent dosemeters. Harvey JA; Kearfott KJ Radiat Prot Dosimetry; 2012 Apr; 149(2):109-15. PubMed ID: 21733861 [TBL] [Abstract][Full Text] [Related]
34. Energy dependence of new thermoluminescent detectors in terms of HP(10) values. Miljanić S; Knezević Z; Stuhec M; Ranogajec-Komor M; Krpan K; Vekić B Radiat Prot Dosimetry; 2003; 106(3):253-6. PubMed ID: 14690327 [TBL] [Abstract][Full Text] [Related]
35. Studies on energy response of newly developed LiF:Mg,Cu,P TL chips with additional PbO doping. Tang K; Fan H; Cui H; Zhu H; Liu Z Radiat Prot Dosimetry; 2015 Feb; 163(3):284-7. PubMed ID: 24962516 [TBL] [Abstract][Full Text] [Related]
36. A STUDY ON THE UNCERTAINTY FOR THE ROUTINE DOSIMETRY SERVICE AT THE LEBANESE ATOMIC ENERGY COMMISSION USING HARSHAW 8814 DOSEMETERS. Rizk C; Vanhavere F Radiat Prot Dosimetry; 2016 Sep; 170(1-4):168-72. PubMed ID: 26443544 [TBL] [Abstract][Full Text] [Related]
37. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique. Lee Y; Won Y; Kang K Radiat Prot Dosimetry; 2015 Apr; 164(3):449-55. PubMed ID: 25301971 [TBL] [Abstract][Full Text] [Related]
38. Thermoluminescent dosimeters for low dose X-ray measurements. Del Sol Fernández S; García-Salcedo R; Sánchez-Guzmán D; Ramírez-Rodríguez G; Gaona E; de León-Alfaro MA; Rivera-Montalvo T Appl Radiat Isot; 2016 Jan; 107():340-345. PubMed ID: 26609683 [TBL] [Abstract][Full Text] [Related]
39. FADING EFFECT OF LiF:Mg,Ti AND LiF:Mg,Cu,P Ext-Rad AND WHOLE-BODY DETECTORS. Pereira J; Pereira MF; Rangel S; Saraiva M; Santos LM; Cardoso JV; Alves JG Radiat Prot Dosimetry; 2016 Sep; 170(1-4):177-80. PubMed ID: 26503857 [TBL] [Abstract][Full Text] [Related]
40. Energy response of a two-dimensional sheet-type LiF:Mg,Cu,P TL dosemeter to photons. Konnai A; Nariyama N; Ohnishi S; Odano N; Ozasa N; Ishikawa Y Radiat Prot Dosimetry; 2006; 120(1-4):125-8. PubMed ID: 16614093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]