These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15296318)

  • 1. Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals.
    Maeder V; Escher BI; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2004 Jul; 38(13):3659-66. PubMed ID: 15296318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of bioaccumulative and non-bioaccumulative chemicals using statistical learning approaches.
    Sun X; Li Y; Liu X; Ding J; Wang Y; Shen H; Chang Y
    Mol Divers; 2008; 12(3-4):157-69. PubMed ID: 18937041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The discrimination of excess toxicity from baseline effect: effect of bioconcentration.
    Su LM; Liu X; Wang Y; Li JJ; Wang XH; Sheng LX; Zhao YH
    Sci Total Environ; 2014 Jun; 484():137-45. PubMed ID: 24698800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
    Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S
    Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physicochemical basis of QSARs for baseline toxicity.
    Mackay D; Arnot JA; Petkova EP; Wallace KB; Call DJ; Brooke LT; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):393-414. PubMed ID: 19544198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The internal critical level concept of nonspecific toxicity.
    Chaisuksant Y; Yu Q; Connell DW
    Rev Environ Contam Toxicol; 1999; 162():1-41. PubMed ID: 10392041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes.
    Veith GD; Broderius SJ
    Environ Health Perspect; 1990 Jul; 87():207-11. PubMed ID: 2269227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated testing and intelligent assessment-new challenges under REACH.
    Ahlers J; Stock F; Werschkun B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):565-72. PubMed ID: 18818964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Assessment of Bioconcentration, Toxicity, and Hazards of Chlorobenzenes in the Aquatic Environment.
    Djohan D; Yu Q; Connell DW
    Arch Environ Contam Toxicol; 2020 Feb; 78(2):216-229. PubMed ID: 31897536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case.
    Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI
    J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening for PBT chemicals among the "existing" and "new" chemicals of the EU.
    Strempel S; Scheringer M; Ng CA; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(11):5680-7. PubMed ID: 22494215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes.
    Wang Q; Jia Q; Yan L; Xia S; Ma P
    Chemosphere; 2014 Aug; 108():383-7. PubMed ID: 24630251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Criteria for classifying chemical substances according to toxicity: carcinogens, irritants, corrosives, allergens, fetotoxins and those absorbed through the skin].
    Czerczak S; Kupczewska M
    Med Pr; 1998; 49(1):67-81. PubMed ID: 9587913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.