These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15296319)

  • 1. Adsorption of organic vapors to air-dry soils: model predictions and experimental validation.
    Goss KU; Buschmann J; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(13):3667-73. PubMed ID: 15296319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive sorption mechanisms of soil organic matter and mineral components as elucidated by organic vapor uptake kinetics.
    Shih YH; Wu SC
    Environ Toxicol Chem; 2005 Nov; 24(11):2827-32. PubMed ID: 16398119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of a diverse set of organic vapors to urban aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6638-43. PubMed ID: 16190222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of a diverse set of organic vapors to diesel soot and road tunnel aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6632-7. PubMed ID: 16190221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models for the adsorption of organic compounds at gas-water interfaces.
    Poole CF
    J Environ Monit; 2005 Jun; 7(6):577-80. PubMed ID: 15931417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Dec; 47(24):14233-41. PubMed ID: 24266749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence.
    Bronner G; Goss KU
    Environ Sci Technol; 2011 Feb; 45(4):1307-12. PubMed ID: 21194206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption equilibrium of a wide spectrum of organic vapors in Leonardite humic acid: experimental setup and experimental data.
    Niederer C; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2006 Sep; 40(17):5368-73. PubMed ID: 16999112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of nonpolar neutral organic compounds to model aquifer sands: implications on blocking effect.
    Joo JC; Kim JY; Nam K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(9):1008-19. PubMed ID: 21847791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.
    Smernik RJ; Kookana RS
    Chemosphere; 2015 Jan; 119():99-104. PubMed ID: 24972176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of a nonionic surfactant Tween 80 by minerals and soils.
    Kang S; Jeong HY
    J Hazard Mater; 2015 Mar; 284():143-50. PubMed ID: 25463228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors.
    Niederer C; Goss KU
    Environ Sci Technol; 2007 May; 41(10):3646-52. PubMed ID: 17547191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.
    Wong F; Wania F
    J Environ Monit; 2011 Jun; 13(6):1569-78. PubMed ID: 21637880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatographic models for the sorption of neutral organic compounds by soil from water and air.
    Poole SK; Poole CF
    J Chromatogr A; 1999 Jun; 845(1-2):381-400. PubMed ID: 10399340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sediment-air equilibrium partitioning of semi-volatile hydrophobic organic compounds. Part 1. Method development and water vapor sorption isotherm.
    de Seze G; Valsaraj KT; Reible DD; Thibodeaux LJ
    Sci Total Environ; 2000 May; 253(1-3):15-26. PubMed ID: 10843328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry.
    Sokol NW; Sanderman J; Bradford MA
    Glob Chang Biol; 2019 Jan; 25(1):12-24. PubMed ID: 30338884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient gas/particle partitioning. 1. Sorption mechanisms of apolar, polar, and ionizable organic compounds.
    Arp HP; Schwarzenbach RP; Goss KU
    Environ Sci Technol; 2008 Aug; 42(15):5541-7. PubMed ID: 18754473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of dissolved organic matter and its effects on the atrazine sorption on soils.
    Ling WT; Wang HZ; Xu JM; Gao YZ
    J Environ Sci (China); 2005; 17(3):478-82. PubMed ID: 16083129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.
    Schneider M; Goss KU
    Environ Sci Technol; 2012 Nov; 46(22):12527-33. PubMed ID: 23130847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.