BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15296460)

  • 1. Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film.
    Masui A; Yasuda M; Fujiwara N; Ishikawa H
    Biotechnol Prog; 2004; 20(4):1267-9. PubMed ID: 15296460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic hydrolysis of gelatin layers of X-Ray films and release of silver particles using keratinolytic serine proteases from Purpureocillium lilacinum LPS # 876.
    Cavello IA; Hours RA; Cavalitto SF
    J Microbiol Biotechnol; 2013 Aug; 23(8):1133-9. PubMed ID: 23727808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient proteolysis and application of an alkaline protease from halophilic Bacillus sp. EMB9.
    Sinha R; Srivastava AK; Khare SK
    Prep Biochem Biotechnol; 2014 Oct; 44(7):680-96. PubMed ID: 24905047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic surface modification of poly(ethylene terephthalate).
    Vertommen MA; Nierstrasz VA; Veer Mv; Warmoeskerken MM
    J Biotechnol; 2005 Dec; 120(4):376-86. PubMed ID: 16115695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic synthesis silver crystallite by peptide AYSSGAPPMPPF immobilized on PET film in vitro.
    Zhang X; Chen J; Yang P; Yang W
    J Inorg Biochem; 2005 Aug; 99(8):1692-7. PubMed ID: 16005978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of chitosan on PET films monitored by quartz crystal microbalance.
    Indest T; Laine J; Ribitsch V; Johansson LS; Stana-Kleinschek K; Strnad S
    Biomacromolecules; 2008 Aug; 9(8):2207-14. PubMed ID: 18588342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting degradation of polyethylene terephthalate (PET) during pre-flotation conditioning.
    Caparanga AR; Basilia BA; Dagbay KB; Salvacion JW
    Waste Manag; 2009 Sep; 29(9):2425-8. PubMed ID: 19394808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi.
    Nimchua T; Punnapayak H; Zimmermann W
    Biotechnol J; 2007 Mar; 2(3):361-4. PubMed ID: 17136729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres.
    Heumann S; Eberl A; Pobeheim H; Liebminger S; Fischer-Colbrie G; Almansa E; Cavaco-Paulo A; Gübitz GM
    J Biochem Biophys Methods; 2006 Nov; 69(1-2):89-99. PubMed ID: 16624419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Utilization of a visual gelatin-silver method for selecting micromycete producers of proteases].
    Basarab BN; Bilaĭ TI
    Mikrobiol Zh; 1974; 36(2):242-4. PubMed ID: 4465657
    [No Abstract]   [Full Text] [Related]  

  • 12. The histochemical demonstration of protease by a gelatin-silver film substrate.
    ADAMS CW; TUQAN NA
    J Histochem Cytochem; 1961 Sep; 9():469-72. PubMed ID: 13859297
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of chemical and enzymatic treatments on the hydrolysis of swine wastewater.
    Lee YH; Chung YC; Jung JY
    Water Sci Technol; 2008; 58(7):1529-34. PubMed ID: 18957769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal Raman microscopy of morphological changes in poly(ethylene terephthalate) film induced by supercritical CO(2).
    Fleming OS; Kazarian SG
    Appl Spectrosc; 2004 Apr; 58(4):390-4. PubMed ID: 15104807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Extracellular proteolytic eyzymes of microscopic fungi from thermal springs of the Barguzin Valley (Northern Baikal region)].
    Bazarzhapov BB; Lavrent'ev EV; Dunaevskiĭ IaE; Bilanenko EN; Namsaraev BB
    Prikl Biokhim Mikrobiol; 2006; 42(2):209-12. PubMed ID: 16761576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-layer assembly of biomacromolecules on poly(ethylene terephthalate) films and fiber fabrics to promote endothelial cell growth.
    Liu Y; He T; Song H; Gao C
    J Biomed Mater Res A; 2007 Jun; 81(3):692-704. PubMed ID: 17187387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers.
    Harada Y; Girolami GS; Nuzzo RG
    Langmuir; 2004 Dec; 20(25):10878-88. PubMed ID: 15568837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneities in gelatin film formation using single-sided NMR.
    Ghoshal S; Mattea C; Denner P; Stapf S
    J Phys Chem B; 2010 Dec; 114(49):16356-63. PubMed ID: 21086961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity.
    Yang J; Huang X; Tian B; Wang M; Niu Q; Zhang K
    Biotechnol Lett; 2005 Aug; 27(15):1123-8. PubMed ID: 16132863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of weak and covalent bonds on formation and hydrolysis of gelatin networks.
    Giraudier S; Hellio D; Djabourov M; Larreta-Garde V
    Biomacromolecules; 2004; 5(5):1662-6. PubMed ID: 15360272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.