These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579 [TBL] [Abstract][Full Text] [Related]
6. β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates. Marques MPC; Fernandes P Methods Mol Biol; 2017; 1645():167-176. PubMed ID: 28710628 [TBL] [Abstract][Full Text] [Related]
7. Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media. de Carvalho CCCR; Fernandes P Methods Mol Biol; 2017; 1645():313-320. PubMed ID: 28710638 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Claudino MJ; Soares D; Van Keulen F; Marques MP; Cabral JM; Fernandes P Bioresour Technol; 2008 May; 99(7):2304-11. PubMed ID: 17596940 [TBL] [Abstract][Full Text] [Related]
10. Transformation of sitosterol to androsta-1, 4-diene-3, 17-dione by immobilized Mycobacterium cells. Roy PK; Khan AW; Basu SK Indian J Biochem Biophys; 1991 Apr; 28(2):150-4. PubMed ID: 1879871 [TBL] [Abstract][Full Text] [Related]
11. [Cleavage of the side chain of sitosterol by R, S and M mycobacteria variants]. Mil'ko ES; Korobova IuN; Gabinskaia KN; Egorov NS Mikrobiologiia; 1982; 51(1):166-8. PubMed ID: 6803108 [TBL] [Abstract][Full Text] [Related]
12. Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Dovbnya DV; Egorova OV; Donova MV Steroids; 2010 Oct; 75(10):653-8. PubMed ID: 20385161 [TBL] [Abstract][Full Text] [Related]
13. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
14. Steroid transformation by mutants of Mycobacterium sp. with altered response to antibiotics. Barthakur S; Roy MK; Bera SK; Ghosh AC J Basic Microbiol; 1996; 36(6):383-7. PubMed ID: 8956488 [TBL] [Abstract][Full Text] [Related]
15. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Vidal M; Becerra J; Mondaca MA; Silva M Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690 [TBL] [Abstract][Full Text] [Related]
16. [Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805]. Yuan J; Chen G; Cheng S; Ge F; Qiong W; Li W; Li J Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):523-33. PubMed ID: 26380409 [TBL] [Abstract][Full Text] [Related]
17. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192 [TBL] [Abstract][Full Text] [Related]
18. Selection and characterization of new microorganisms for the manufacture of 9-OH-AD from sterols. Seidel L; Hörhold C J Basic Microbiol; 1992; 32(1):49-55. PubMed ID: 1527709 [TBL] [Abstract][Full Text] [Related]
19. Scale-Up of Phytosterols Bioconversion into Androstenedione. Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630 [TBL] [Abstract][Full Text] [Related]
20. Production of 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione from rice germ and wheat germ extracts by Mycobacterium sp. Saraphanchotiwitthaya A; Sripalakit P Biotechnol Lett; 2016 Sep; 38(9):1595-602. PubMed ID: 27262293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]