These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 1529708)
21. The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria. Sedlaczek L; Lisowska K; Korycka M; Rumijowska A; Ziółkowski A; Długoński J Appl Microbiol Biotechnol; 1999 Oct; 52(4):563-71. PubMed ID: 10570804 [TBL] [Abstract][Full Text] [Related]
22. Sitosterol bioconversion with resting cells in liquid polymer based systems. Carvalho F; Marques MP; de Carvalho CC; Cabral JM; Fernandes P Bioresour Technol; 2009 Sep; 100(17):4050-3. PubMed ID: 19362822 [TBL] [Abstract][Full Text] [Related]
23. Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805. Mancilla RA; Little C; Amoroso A Appl Biochem Biotechnol; 2018 Jun; 185(2):494-506. PubMed ID: 29196932 [TBL] [Abstract][Full Text] [Related]
24. Microbial transformation of beta-sitosterol and stigmasterol into 26-oxygenated derivatives. Ambrus G; Ilköy E; Jekkel A; Horváth G; Böcskei Z Steroids; 1995 Sep; 60(9):621-5. PubMed ID: 8545851 [TBL] [Abstract][Full Text] [Related]
25. [Steroid transformation with immobilized microorganisms. III. Degradation of the side chain of cholesterol derivatives with immobilized Mycobaterium phlei and M. smegmatis cells]. Atrat P; Hörhold C; Buchar MJ; Koschtschejenko KA Z Allg Mikrobiol; 1980; 20(4):239-43. PubMed ID: 7424049 [TBL] [Abstract][Full Text] [Related]
26. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. Malaviya A; Gomes J J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1235-9. PubMed ID: 18716814 [TBL] [Abstract][Full Text] [Related]
27. Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: from sitosterol to androstenedione. Marques MP; Magalhães S; Cabral JM; Fernandes P J Biotechnol; 2009 May; 141(3-4):174-80. PubMed ID: 19433223 [TBL] [Abstract][Full Text] [Related]
28. Metabolic blocks in the degradation of beta-sitosterol by a plasmid-cured strain of Arthrobacter oxydans. Dutta RK; Roy MK; Singh HD J Basic Microbiol; 1992; 32(3):167-76. PubMed ID: 1512707 [TBL] [Abstract][Full Text] [Related]
29. Behaviour of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy. De Carvalho CC; Cruz A; Angelova B; Fernandes P; Pons MN; Pinheiro HM; Cabral JM; Da Fonseca MM Appl Microbiol Biotechnol; 2004 Jun; 64(5):695-701. PubMed ID: 14689247 [TBL] [Abstract][Full Text] [Related]
31. Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione. He K; Sun H; Song H Biotechnol Lett; 2018 Apr; 40(4):673-678. PubMed ID: 29392454 [TBL] [Abstract][Full Text] [Related]
33. Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treated Mycobacterium cells. Angelova B; Fernandes P; Spasova D; Mutafov S; Pinheiro HM; Cabral JM Microsc Res Tech; 2006 Aug; 69(8):613-7. PubMed ID: 16729266 [TBL] [Abstract][Full Text] [Related]
34. Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment. Liu C; Zhang X; Rao ZM; Shao ML; Zhang LL; Wu D; Xu ZH; Li H J Zhejiang Univ Sci B; 2015 Apr; 16(4):286-95. PubMed ID: 25845362 [TBL] [Abstract][Full Text] [Related]
35. Selection of Biodegrading Phytosterol Strains. Mondaca MA; Vidal M; Chamorro S; Vidal G Methods Mol Biol; 2017; 1645():143-150. PubMed ID: 28710625 [TBL] [Abstract][Full Text] [Related]
36. Rapid screening and isolation of a fungus for sitosterol to androstenedione biotransformation. Malaviya A; Gomes J Appl Biochem Biotechnol; 2009 Aug; 158(2):374-86. PubMed ID: 19189060 [TBL] [Abstract][Full Text] [Related]
37. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp. Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395 [TBL] [Abstract][Full Text] [Related]
38. Effect of inhibitors of cell envelope synthesis on beta-sitosterol side chain degradation by Mycobacterium sp. NRRL MB 3683. Sedlaczek L; Górmiński BM; Lisowska K J Basic Microbiol; 1994; 34(6):387-99. PubMed ID: 7815307 [TBL] [Abstract][Full Text] [Related]
39. Phytosterols as precursors for the synthesis of aromatase inhibitors: Hemisynthesis of testololactone and testolactone. Lone SH; Bhat KA Steroids; 2015 Apr; 96():164-8. PubMed ID: 25697056 [TBL] [Abstract][Full Text] [Related]
40. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Lin Y; Song X; Fu J; Lin J; Qu Y Bioresour Technol; 2009 Mar; 100(5):1864-7. PubMed ID: 19006663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]