These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1529752)

  • 1. Ca2+ antagonists as tools in the analysis of excitation-contraction coupling in skeletal muscle fibres.
    Lüttgau HC; Böhle T; Schnier A
    Adv Exp Med Biol; 1992; 311():149-62. PubMed ID: 1529752
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of dihydropyridines on cation transport across the skeletal muscle membrane in the frog].
    Shvinka NE; Caffier G; Vinogradova TA; Velena AKh; Bisenieks EA
    Tsitologiia; 1988 Oct; 30(10):1254-60. PubMed ID: 2854317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine- and Ca2(+)-induced mechanical oscillations in isolated skeletal muscle fibres of the frog.
    Herrmann-Frank A
    J Muscle Res Cell Motil; 1989 Dec; 10(6):437-45. PubMed ID: 2613883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the phenylalkylamine D888 (devapamil) on force and Ca2+ current in isolated frog skeletal muscle fibres.
    Erdmann R; Lüttgau HC
    J Physiol; 1989 Jun; 413():521-41. PubMed ID: 2557440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the benzothiazepine diltiazem on force and Ca2+ current in isolated frog skeletal muscle fibres.
    Böhle T
    J Physiol; 1992 Jan; 445():303-18. PubMed ID: 1323667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of isometric tension development in relation to calcium binding of skinned muscle fibres.
    Griffiths PJ; Kuhn HJ; Güth K; Rüegg JC
    Pflugers Arch; 1979 Nov; 382(2):165-70. PubMed ID: 315537
    [No Abstract]   [Full Text] [Related]  

  • 7. The action of D600 on frog skeletal muscle: facilitation of excitation-contraction coupling.
    Dörrscheidt-Käfer M
    Pflugers Arch; 1977 Jul; 369(3):259-67. PubMed ID: 302434
    [No Abstract]   [Full Text] [Related]  

  • 8. [The potential-dependent incoming ionic currents of myoblasts from the frog Rana temporaria developing in culture].
    Luk'ianenko VI; Nasledov GA; Katina IE; Lonskiĭ AV
    Zh Evol Biokhim Fiziol; 1992; 28(1):134-7. PubMed ID: 1326148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.
    Eisenberg RS; McCarthy RT; Milton RL
    J Physiol; 1983 Aug; 341():495-505. PubMed ID: 6604805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of calcium and Ca antagonists upon excitation-contraction coupling.
    Lüttgau HC; Gottschalk G; Berwe D
    Can J Physiol Pharmacol; 1987 Apr; 65(4):717-23. PubMed ID: 2440546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcium "antagonists" on vertebrate skeletal muscle cells.
    Helland LA; Lopez JR; Taylor SR; Trube G; Wanek LA
    Ann N Y Acad Sci; 1988; 522():259-68. PubMed ID: 3259850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical activation in slow and twitch skeletal muscle fibres of the frog.
    Gilly WF; Hui CS
    J Physiol; 1980 Apr; 301():137-56. PubMed ID: 6967970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore.
    Almers W; McCleskey EW
    J Physiol; 1984 Aug; 353():585-608. PubMed ID: 6090646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A calcium dependent inward current in frog skeletal muscle fibres.
    Stanfield PR
    Pflugers Arch; 1977 Apr; 368(3):267-70. PubMed ID: 301266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold ion induces contraction in frog skeletal muscle fibers.
    Nihonyanagi K; Oba T
    Eur J Pharmacol; 1993 Jul; 238(2-3):149-55. PubMed ID: 8405088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique.
    Almers W; Palade PT
    J Physiol; 1981 Mar; 312():159-76. PubMed ID: 6267261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres.
    Cota G; Stefani E
    J Physiol; 1981 Aug; 317():303-16. PubMed ID: 6975818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.
    Sárközi S; Szentesi P; Jona I; Csernoch L
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):611-26. PubMed ID: 8887770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.