These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 15298202)

  • 21. Mobility of organic carbon from incineration residues.
    Ecke H; Svensson M
    Waste Manag; 2008; 28(8):1301-9. PubMed ID: 17689951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limitations of the toxicity characteristic leaching procedure for providing a conservative estimate of landfilled municipal solid waste incineration ash leaching.
    Intrakamhaeng V; Clavier KA; Roessler JG; Townsend TG
    J Air Waste Manag Assoc; 2019 May; 69(5):623-632. PubMed ID: 30747046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.
    Takahashi F; Shimaoka T
    Waste Manag; 2012 Dec; 32(12):2294-305. PubMed ID: 22796015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-term natural weathering of MSWI bottom ash.
    Chimenos JM; Fernández AI; Nadal R; Espiell F
    J Hazard Mater; 2000 Dec; 79(3):287-99. PubMed ID: 11077164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper leaching of MSWI bottom ash co-disposed with refuse: effect of short-term accelerated weathering.
    Su L; Guo G; Shi X; Zuo M; Niu D; Zhao A; Zhao Y
    Waste Manag; 2013 Jun; 33(6):1411-7. PubMed ID: 23490365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash.
    Lin KL; Chang CT
    J Hazard Mater; 2006 Jul; 135(1-3):296-302. PubMed ID: 16406298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.
    Keulen A; van Zomeren A; Harpe P; Aarnink W; Simons HAE; Brouwers HJH
    Waste Manag; 2016 Mar; 49():83-95. PubMed ID: 26856445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissolved organic matter (DOM) was detected in MSWI plant: An investigation of DOM and potential toxic elements variation in the bottom ash and fly ash.
    Liu Q; Huang Q; Zhao Y; Liu Y; Wang Q; Khan MA; Che X; Li X; Bai Y; Su X; Lin L; Zhao Y; Chen Y; Wang J
    Sci Total Environ; 2022 Jul; 828():154339. PubMed ID: 35257758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of organic matter on municipal solid waste incinerator bottom ash carbonation.
    Rendek E; Ducom G; Germain P
    Chemosphere; 2006 Aug; 64(7):1212-8. PubMed ID: 16405953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the effects of municipal solid waste incinerator bottom ash on the decomposition of biodegradable waste using a completely mixed anaerobic reactor.
    Banks CJ; Lo HM
    Waste Manag Res; 2003 Jun; 21(3):225-34. PubMed ID: 12870642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions.
    Van Gerven T; Cooreman H; Imbrechts K; Hindrix K; Vandecasteele C
    J Hazard Mater; 2007 Feb; 140(1-2):376-81. PubMed ID: 17112661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Process identification and model development of contaminant transport in MSWI bottom ash.
    Dijkstra JJ; van der Sloot HA; Comans RN
    Waste Manag; 2002; 22(5):531-41. PubMed ID: 12092763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.
    Etoh J; Kawagoe T; Shimaoka T; Watanabe K
    Waste Manag; 2009 Mar; 29(3):1048-57. PubMed ID: 18845427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.
    Ni P; Xiong Z; Tian C; Li H; Zhao Y; Zhang J; Zheng C
    Waste Manag; 2017 Sep; 67():171-180. PubMed ID: 28551279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding.
    Christl I; Metzger A; Heidmann I; Kretzschmar R
    Environ Sci Technol; 2005 Jul; 39(14):5319-26. PubMed ID: 16082962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.
    Ishii K; Furuichi T; Tanikawa N
    Waste Manag; 2009 Feb; 29(2):513-21. PubMed ID: 18691865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reuse potential of municipal solid waste incinerator bottom ash as secondary aggregate: Material characteristics, persistent organic pollutant content and effects of pH and selected environmental lixiviants on leaching behaviour.
    Sepúlveda Olea FE; Burke IT; Mohammad A; Stewart DI
    Waste Manag; 2024 Oct; 187():262-274. PubMed ID: 39079254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.