BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 15298890)

  • 41. Foldamer dynamics expressed via Markov state models. I. Explicit solvent molecular-dynamics simulations in acetonitrile, chloroform, methanol, and water.
    Elmer SP; Park S; Pande VS
    J Chem Phys; 2005 Sep; 123(11):114902. PubMed ID: 16392592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple solvent crystal structures: probing binding sites, plasticity and hydration.
    Mattos C; Bellamacina CR; Peisach E; Pereira A; Vitkup D; Petsko GA; Ringe D
    J Mol Biol; 2006 Apr; 357(5):1471-82. PubMed ID: 16488429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Synthesis of three- and tetrapeptides catalyzed by subtilisin suspensions in organic solvents].
    Getun IV; Filippova IIu; Lysogorskaia EN; Kolobanova SV; Oksenoĭt ES; Anisimova VV; Stepanov VM
    Bioorg Khim; 1998 Apr; 24(4):306-12. PubMed ID: 9612574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Obtaining a high activity subtilisin preparation by controlled thermal stress in n-octane.
    Prasad S; Roy I
    Anal Biochem; 2017 Oct; 534():86-90. PubMed ID: 28732585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitrile groups as vibrational probes: calculations of the CN infrared absorption line shape of acetonitrile in water and tetrahydrofuran.
    Lindquist BA; Corcelli SA
    J Phys Chem B; 2008 May; 112(20):6301-3. PubMed ID: 18438998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monte Carlo simulations of the solution structure of simple alcohols in water-acetonitrile mixtures.
    Nagy PI; Erhardt PW
    J Phys Chem B; 2005 Mar; 109(12):5855-72. PubMed ID: 16851638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.
    Sharma S; Tyagi R; Gupta MN; Singh TP
    Indian J Biochem Biophys; 2001; 38(1-2):34-41. PubMed ID: 11563328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subtilisin BPN' variants: increased hydrolytic activity on surface-bound substrates via decreased surface activity.
    Brode PF; Erwin CR; Rauch DS; Barnett BL; Armpriester JM; Wang ES; Rubingh DN
    Biochemistry; 1996 Mar; 35(10):3162-9. PubMed ID: 8605150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular mechanism of the hydration of Candida antarctica lipase B in the gas phase: Water adsorption isotherms and molecular dynamics simulations.
    Branco RJ; Graber M; Denis V; Pleiss J
    Chembiochem; 2009 Dec; 10(18):2913-9. PubMed ID: 19847841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Catalysis by enzymes entrapped into reversed micelles of surfactants in organic solvents. Peroxidase in the aerosol OT-water-octane system].
    Kliachko NL; Levashov AV; Martinek K
    Mol Biol (Mosk); 1984; 18(4):1019-31. PubMed ID: 6209542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of vicinal polar and charged groups on hydrophobic hydration.
    Cheng YK; Rossky PJ
    Biopolymers; 1999 Dec; 50(7):742-50. PubMed ID: 10547529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of environmental dynamics at the active site and activity of an enzyme under nanoscopic confinement: Subtilisin Carlsberg in anionic AOT reverse micelle.
    Rakshit S; Saha R; Pal SK
    J Phys Chem B; 2013 Oct; 117(39):11565-74. PubMed ID: 24004033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate desolvation as a governing factor in enzymatic transformations of PAHs in aqueous-acetonitrile mixtures.
    Borole AP; Cheng CL; Davison BH
    Biotechnol Prog; 2004; 20(4):1251-4. PubMed ID: 15296456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acceptable protein and solvent behavior in primary hydration shell simulations of hen lysozyme.
    Hamaneh MB; Buck M
    Biophys J; 2007 Apr; 92(7):L49-51. PubMed ID: 17259273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing enzymic transition state hydrophobicities.
    Wangikar PP; Rich JO; Clark DS; Dordick JS
    Biochemistry; 1995 Sep; 34(38):12302-10. PubMed ID: 7547973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calcium-ion-induced stabilization of the protease from Bacillus cereus WQ9-2 in aqueous hydrophilic solvents: effect of calcium ion binding on the hydration shell and intramolecular interactions.
    Xu J; Zhuang Y; Wu B; Su L; He B
    J Biol Inorg Chem; 2013 Feb; 18(2):211-221. PubMed ID: 23322168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.
    Eisenhaber F; Argos P
    Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystallographic analysis of counterion effects on subtilisin enzymatic action in acetonitrile.
    Cianci M; Tomaszewski B; Helliwell JR; Halling PJ
    J Am Chem Soc; 2010 Feb; 132(7):2293-300. PubMed ID: 20099851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme.
    Nakasako M; Odaka M; Yohda M; Dohmae N; Takio K; Kamiya N; Endo I
    Biochemistry; 1999 Aug; 38(31):9887-98. PubMed ID: 10433695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.