These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15298891)

  • 41. More gating charges are needed to open a Shaker K+ channel than are needed to open an rBIIA Na+ channel.
    Gamal El-Din TM; Grögler D; Lehmann C; Heldstab H; Greeff NG
    Biophys J; 2008 Aug; 95(3):1165-75. PubMed ID: 18390620
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current-voltage-time records of ion translocating enzymes.
    Gradmann D; Boyd CM
    Eur Biophys J; 2004 Aug; 33(5):396-411. PubMed ID: 14762704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A resonance model gives the response to membrane potential for an ion channel: II. Simplification of the calculation, and prediction of stochastic resonance.
    Fatade A; Snowhite J; Green ME
    J Theor Biol; 2000 Oct; 206(3):387-93. PubMed ID: 10988024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel parameter to estimate the minimum number of bound ligands needed to activate an ion channel.
    Castrignanò T; Aluffi-Pentini F; Parisi V
    J Theor Biol; 1999 Jul; 199(1):97-103. PubMed ID: 10419762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voltage-gated transient currents in bovine adrenal fasciculata cells. I. T-type Ca2+ current.
    Mlinar B; Biagi BA; Enyeart JJ
    J Gen Physiol; 1993 Aug; 102(2):217-37. PubMed ID: 8228909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels.
    Cui J; Cox DH; Aldrich RW
    J Gen Physiol; 1997 May; 109(5):647-73. PubMed ID: 9154910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels.
    Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA
    J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.
    Islas LD; Sigworth FJ
    J Gen Physiol; 1999 Nov; 114(5):723-42. PubMed ID: 10539976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gating of maxi K+ channels studied by Ca2+ concentration jumps in excised inside-out multi-channel patches (myocytes from guinea pig urinary bladder).
    Markwardt F; Isenberg G
    J Gen Physiol; 1992 Jun; 99(6):841-62. PubMed ID: 1322449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation.
    Bezanilla F; Perozo E; Stefani E
    Biophys J; 1994 Apr; 66(4):1011-21. PubMed ID: 8038375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage-insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels.
    Bao H; Hakeem A; Henteleff M; Starkus JG; Rayner MD
    J Gen Physiol; 1999 Jan; 113(1):139-51. PubMed ID: 9874694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels.
    McCabe SL; Pelosi DM; Tetreault M; Miri A; Nguitragool W; Kovithvathanaphong P; Mahajan R; Zimmerman AL
    J Gen Physiol; 2004 May; 123(5):521-31. PubMed ID: 15078915
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.
    Goldwyn JH; Imennov NS; Famulare M; Shea-Brown E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041908. PubMed ID: 21599202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.
    Banerjee K; Das B; Gangopadhyay G
    J Chem Phys; 2013 Apr; 138(16):165102. PubMed ID: 23635173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new approach to define dynamics of the ion channel gates.
    Ozer M; Erdem R; Provaznik I
    Neuroreport; 2004 Feb; 15(2):335-8. PubMed ID: 15076764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Voltage- and cold-dependent gating of single TRPM8 ion channels.
    Fernández JA; Skryma R; Bidaux G; Magleby KL; Scholfield CN; McGeown JG; Prevarskaya N; Zholos AV
    J Gen Physiol; 2011 Feb; 137(2):173-95. PubMed ID: 21282398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels.
    Schoppa NE; Sigworth FJ
    J Gen Physiol; 1998 Feb; 111(2):313-42. PubMed ID: 9450946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels.
    Cox DH; Cui J; Aldrich RW
    J Gen Physiol; 1997 May; 109(5):633-46. PubMed ID: 9154909
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels.
    Zheng J; Vankataramanan L; Sigworth FJ
    J Gen Physiol; 2001 Nov; 118(5):547-64. PubMed ID: 11696611
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activation of shaker potassium channels. I. Characterization of voltage-dependent transitions.
    Schoppa NE; Sigworth FJ
    J Gen Physiol; 1998 Feb; 111(2):271-94. PubMed ID: 9450944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.